Metamath Proof Explorer


Theorem resin

Description: The restriction of a one-to-one onto function to an intersection maps onto the intersection of the images. (Contributed by Paul Chapman, 11-Apr-2009)

Ref Expression
Assertion resin ( ( Fun 𝐹 ∧ ( 𝐹𝐴 ) : 𝐴onto𝐶 ∧ ( 𝐹𝐵 ) : 𝐵onto𝐷 ) → ( 𝐹 ↾ ( 𝐴𝐵 ) ) : ( 𝐴𝐵 ) –1-1-onto→ ( 𝐶𝐷 ) )

Proof

Step Hyp Ref Expression
1 resdif ( ( Fun 𝐹 ∧ ( 𝐹𝐴 ) : 𝐴onto𝐶 ∧ ( 𝐹𝐵 ) : 𝐵onto𝐷 ) → ( 𝐹 ↾ ( 𝐴𝐵 ) ) : ( 𝐴𝐵 ) –1-1-onto→ ( 𝐶𝐷 ) )
2 f1ofo ( ( 𝐹 ↾ ( 𝐴𝐵 ) ) : ( 𝐴𝐵 ) –1-1-onto→ ( 𝐶𝐷 ) → ( 𝐹 ↾ ( 𝐴𝐵 ) ) : ( 𝐴𝐵 ) –onto→ ( 𝐶𝐷 ) )
3 1 2 syl ( ( Fun 𝐹 ∧ ( 𝐹𝐴 ) : 𝐴onto𝐶 ∧ ( 𝐹𝐵 ) : 𝐵onto𝐷 ) → ( 𝐹 ↾ ( 𝐴𝐵 ) ) : ( 𝐴𝐵 ) –onto→ ( 𝐶𝐷 ) )
4 resdif ( ( Fun 𝐹 ∧ ( 𝐹𝐴 ) : 𝐴onto𝐶 ∧ ( 𝐹 ↾ ( 𝐴𝐵 ) ) : ( 𝐴𝐵 ) –onto→ ( 𝐶𝐷 ) ) → ( 𝐹 ↾ ( 𝐴 ∖ ( 𝐴𝐵 ) ) ) : ( 𝐴 ∖ ( 𝐴𝐵 ) ) –1-1-onto→ ( 𝐶 ∖ ( 𝐶𝐷 ) ) )
5 3 4 syld3an3 ( ( Fun 𝐹 ∧ ( 𝐹𝐴 ) : 𝐴onto𝐶 ∧ ( 𝐹𝐵 ) : 𝐵onto𝐷 ) → ( 𝐹 ↾ ( 𝐴 ∖ ( 𝐴𝐵 ) ) ) : ( 𝐴 ∖ ( 𝐴𝐵 ) ) –1-1-onto→ ( 𝐶 ∖ ( 𝐶𝐷 ) ) )
6 dfin4 ( 𝐶𝐷 ) = ( 𝐶 ∖ ( 𝐶𝐷 ) )
7 f1oeq3 ( ( 𝐶𝐷 ) = ( 𝐶 ∖ ( 𝐶𝐷 ) ) → ( ( 𝐹 ↾ ( 𝐴𝐵 ) ) : ( 𝐴𝐵 ) –1-1-onto→ ( 𝐶𝐷 ) ↔ ( 𝐹 ↾ ( 𝐴𝐵 ) ) : ( 𝐴𝐵 ) –1-1-onto→ ( 𝐶 ∖ ( 𝐶𝐷 ) ) ) )
8 6 7 ax-mp ( ( 𝐹 ↾ ( 𝐴𝐵 ) ) : ( 𝐴𝐵 ) –1-1-onto→ ( 𝐶𝐷 ) ↔ ( 𝐹 ↾ ( 𝐴𝐵 ) ) : ( 𝐴𝐵 ) –1-1-onto→ ( 𝐶 ∖ ( 𝐶𝐷 ) ) )
9 dfin4 ( 𝐴𝐵 ) = ( 𝐴 ∖ ( 𝐴𝐵 ) )
10 f1oeq2 ( ( 𝐴𝐵 ) = ( 𝐴 ∖ ( 𝐴𝐵 ) ) → ( ( 𝐹 ↾ ( 𝐴𝐵 ) ) : ( 𝐴𝐵 ) –1-1-onto→ ( 𝐶 ∖ ( 𝐶𝐷 ) ) ↔ ( 𝐹 ↾ ( 𝐴𝐵 ) ) : ( 𝐴 ∖ ( 𝐴𝐵 ) ) –1-1-onto→ ( 𝐶 ∖ ( 𝐶𝐷 ) ) ) )
11 9 10 ax-mp ( ( 𝐹 ↾ ( 𝐴𝐵 ) ) : ( 𝐴𝐵 ) –1-1-onto→ ( 𝐶 ∖ ( 𝐶𝐷 ) ) ↔ ( 𝐹 ↾ ( 𝐴𝐵 ) ) : ( 𝐴 ∖ ( 𝐴𝐵 ) ) –1-1-onto→ ( 𝐶 ∖ ( 𝐶𝐷 ) ) )
12 9 reseq2i ( 𝐹 ↾ ( 𝐴𝐵 ) ) = ( 𝐹 ↾ ( 𝐴 ∖ ( 𝐴𝐵 ) ) )
13 f1oeq1 ( ( 𝐹 ↾ ( 𝐴𝐵 ) ) = ( 𝐹 ↾ ( 𝐴 ∖ ( 𝐴𝐵 ) ) ) → ( ( 𝐹 ↾ ( 𝐴𝐵 ) ) : ( 𝐴 ∖ ( 𝐴𝐵 ) ) –1-1-onto→ ( 𝐶 ∖ ( 𝐶𝐷 ) ) ↔ ( 𝐹 ↾ ( 𝐴 ∖ ( 𝐴𝐵 ) ) ) : ( 𝐴 ∖ ( 𝐴𝐵 ) ) –1-1-onto→ ( 𝐶 ∖ ( 𝐶𝐷 ) ) ) )
14 12 13 ax-mp ( ( 𝐹 ↾ ( 𝐴𝐵 ) ) : ( 𝐴 ∖ ( 𝐴𝐵 ) ) –1-1-onto→ ( 𝐶 ∖ ( 𝐶𝐷 ) ) ↔ ( 𝐹 ↾ ( 𝐴 ∖ ( 𝐴𝐵 ) ) ) : ( 𝐴 ∖ ( 𝐴𝐵 ) ) –1-1-onto→ ( 𝐶 ∖ ( 𝐶𝐷 ) ) )
15 8 11 14 3bitrri ( ( 𝐹 ↾ ( 𝐴 ∖ ( 𝐴𝐵 ) ) ) : ( 𝐴 ∖ ( 𝐴𝐵 ) ) –1-1-onto→ ( 𝐶 ∖ ( 𝐶𝐷 ) ) ↔ ( 𝐹 ↾ ( 𝐴𝐵 ) ) : ( 𝐴𝐵 ) –1-1-onto→ ( 𝐶𝐷 ) )
16 5 15 sylib ( ( Fun 𝐹 ∧ ( 𝐹𝐴 ) : 𝐴onto𝐶 ∧ ( 𝐹𝐵 ) : 𝐵onto𝐷 ) → ( 𝐹 ↾ ( 𝐴𝐵 ) ) : ( 𝐴𝐵 ) –1-1-onto→ ( 𝐶𝐷 ) )