Metamath Proof Explorer


Theorem resindi

Description: Class restriction distributes over intersection. (Contributed by FL, 6-Oct-2008)

Ref Expression
Assertion resindi ( 𝐴 ↾ ( 𝐵𝐶 ) ) = ( ( 𝐴𝐵 ) ∩ ( 𝐴𝐶 ) )

Proof

Step Hyp Ref Expression
1 xpindir ( ( 𝐵𝐶 ) × V ) = ( ( 𝐵 × V ) ∩ ( 𝐶 × V ) )
2 1 ineq2i ( 𝐴 ∩ ( ( 𝐵𝐶 ) × V ) ) = ( 𝐴 ∩ ( ( 𝐵 × V ) ∩ ( 𝐶 × V ) ) )
3 inindi ( 𝐴 ∩ ( ( 𝐵 × V ) ∩ ( 𝐶 × V ) ) ) = ( ( 𝐴 ∩ ( 𝐵 × V ) ) ∩ ( 𝐴 ∩ ( 𝐶 × V ) ) )
4 2 3 eqtri ( 𝐴 ∩ ( ( 𝐵𝐶 ) × V ) ) = ( ( 𝐴 ∩ ( 𝐵 × V ) ) ∩ ( 𝐴 ∩ ( 𝐶 × V ) ) )
5 df-res ( 𝐴 ↾ ( 𝐵𝐶 ) ) = ( 𝐴 ∩ ( ( 𝐵𝐶 ) × V ) )
6 df-res ( 𝐴𝐵 ) = ( 𝐴 ∩ ( 𝐵 × V ) )
7 df-res ( 𝐴𝐶 ) = ( 𝐴 ∩ ( 𝐶 × V ) )
8 6 7 ineq12i ( ( 𝐴𝐵 ) ∩ ( 𝐴𝐶 ) ) = ( ( 𝐴 ∩ ( 𝐵 × V ) ) ∩ ( 𝐴 ∩ ( 𝐶 × V ) ) )
9 4 5 8 3eqtr4i ( 𝐴 ↾ ( 𝐵𝐶 ) ) = ( ( 𝐴𝐵 ) ∩ ( 𝐴𝐶 ) )