Metamath Proof Explorer


Theorem resindir

Description: Class restriction distributes over intersection. (Contributed by NM, 18-Dec-2008)

Ref Expression
Assertion resindir ( ( 𝐴𝐵 ) ↾ 𝐶 ) = ( ( 𝐴𝐶 ) ∩ ( 𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 inindir ( ( 𝐴𝐵 ) ∩ ( 𝐶 × V ) ) = ( ( 𝐴 ∩ ( 𝐶 × V ) ) ∩ ( 𝐵 ∩ ( 𝐶 × V ) ) )
2 df-res ( ( 𝐴𝐵 ) ↾ 𝐶 ) = ( ( 𝐴𝐵 ) ∩ ( 𝐶 × V ) )
3 df-res ( 𝐴𝐶 ) = ( 𝐴 ∩ ( 𝐶 × V ) )
4 df-res ( 𝐵𝐶 ) = ( 𝐵 ∩ ( 𝐶 × V ) )
5 3 4 ineq12i ( ( 𝐴𝐶 ) ∩ ( 𝐵𝐶 ) ) = ( ( 𝐴 ∩ ( 𝐶 × V ) ) ∩ ( 𝐵 ∩ ( 𝐶 × V ) ) )
6 1 2 5 3eqtr4i ( ( 𝐴𝐵 ) ↾ 𝐶 ) = ( ( 𝐴𝐶 ) ∩ ( 𝐵𝐶 ) )