Description: When restricting a relation, intersecting with the domain of the relation has no effect. (Contributed by FL, 6-Oct-2008)
Ref | Expression | ||
---|---|---|---|
Assertion | resindm | ⊢ ( Rel 𝐴 → ( 𝐴 ↾ ( 𝐵 ∩ dom 𝐴 ) ) = ( 𝐴 ↾ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resdm | ⊢ ( Rel 𝐴 → ( 𝐴 ↾ dom 𝐴 ) = 𝐴 ) | |
2 | 1 | ineq2d | ⊢ ( Rel 𝐴 → ( ( 𝐴 ↾ 𝐵 ) ∩ ( 𝐴 ↾ dom 𝐴 ) ) = ( ( 𝐴 ↾ 𝐵 ) ∩ 𝐴 ) ) |
3 | resindi | ⊢ ( 𝐴 ↾ ( 𝐵 ∩ dom 𝐴 ) ) = ( ( 𝐴 ↾ 𝐵 ) ∩ ( 𝐴 ↾ dom 𝐴 ) ) | |
4 | incom | ⊢ ( ( 𝐴 ↾ 𝐵 ) ∩ 𝐴 ) = ( 𝐴 ∩ ( 𝐴 ↾ 𝐵 ) ) | |
5 | inres | ⊢ ( 𝐴 ∩ ( 𝐴 ↾ 𝐵 ) ) = ( ( 𝐴 ∩ 𝐴 ) ↾ 𝐵 ) | |
6 | inidm | ⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 | |
7 | 6 | reseq1i | ⊢ ( ( 𝐴 ∩ 𝐴 ) ↾ 𝐵 ) = ( 𝐴 ↾ 𝐵 ) |
8 | 4 5 7 | 3eqtrri | ⊢ ( 𝐴 ↾ 𝐵 ) = ( ( 𝐴 ↾ 𝐵 ) ∩ 𝐴 ) |
9 | 2 3 8 | 3eqtr4g | ⊢ ( Rel 𝐴 → ( 𝐴 ↾ ( 𝐵 ∩ dom 𝐴 ) ) = ( 𝐴 ↾ 𝐵 ) ) |