Step |
Hyp |
Ref |
Expression |
1 |
|
recosf1o |
⊢ ( cos ↾ ( 0 [,] π ) ) : ( 0 [,] π ) –1-1-onto→ ( - 1 [,] 1 ) |
2 |
|
eqid |
⊢ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) = ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) |
3 |
|
halfpire |
⊢ ( π / 2 ) ∈ ℝ |
4 |
|
neghalfpire |
⊢ - ( π / 2 ) ∈ ℝ |
5 |
|
iccssre |
⊢ ( ( - ( π / 2 ) ∈ ℝ ∧ ( π / 2 ) ∈ ℝ ) → ( - ( π / 2 ) [,] ( π / 2 ) ) ⊆ ℝ ) |
6 |
4 3 5
|
mp2an |
⊢ ( - ( π / 2 ) [,] ( π / 2 ) ) ⊆ ℝ |
7 |
6
|
sseli |
⊢ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → 𝑥 ∈ ℝ ) |
8 |
|
resubcl |
⊢ ( ( ( π / 2 ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( π / 2 ) − 𝑥 ) ∈ ℝ ) |
9 |
3 7 8
|
sylancr |
⊢ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( ( π / 2 ) − 𝑥 ) ∈ ℝ ) |
10 |
4 3
|
elicc2i |
⊢ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↔ ( 𝑥 ∈ ℝ ∧ - ( π / 2 ) ≤ 𝑥 ∧ 𝑥 ≤ ( π / 2 ) ) ) |
11 |
10
|
simp3bi |
⊢ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → 𝑥 ≤ ( π / 2 ) ) |
12 |
|
subge0 |
⊢ ( ( ( π / 2 ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 0 ≤ ( ( π / 2 ) − 𝑥 ) ↔ 𝑥 ≤ ( π / 2 ) ) ) |
13 |
3 7 12
|
sylancr |
⊢ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( 0 ≤ ( ( π / 2 ) − 𝑥 ) ↔ 𝑥 ≤ ( π / 2 ) ) ) |
14 |
11 13
|
mpbird |
⊢ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → 0 ≤ ( ( π / 2 ) − 𝑥 ) ) |
15 |
3
|
recni |
⊢ ( π / 2 ) ∈ ℂ |
16 |
|
picn |
⊢ π ∈ ℂ |
17 |
15
|
negcli |
⊢ - ( π / 2 ) ∈ ℂ |
18 |
16 15
|
negsubi |
⊢ ( π + - ( π / 2 ) ) = ( π − ( π / 2 ) ) |
19 |
|
pidiv2halves |
⊢ ( ( π / 2 ) + ( π / 2 ) ) = π |
20 |
16 15 15 19
|
subaddrii |
⊢ ( π − ( π / 2 ) ) = ( π / 2 ) |
21 |
18 20
|
eqtri |
⊢ ( π + - ( π / 2 ) ) = ( π / 2 ) |
22 |
15 16 17 21
|
subaddrii |
⊢ ( ( π / 2 ) − π ) = - ( π / 2 ) |
23 |
10
|
simp2bi |
⊢ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → - ( π / 2 ) ≤ 𝑥 ) |
24 |
22 23
|
eqbrtrid |
⊢ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( ( π / 2 ) − π ) ≤ 𝑥 ) |
25 |
|
pire |
⊢ π ∈ ℝ |
26 |
|
suble |
⊢ ( ( ( π / 2 ) ∈ ℝ ∧ π ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( ( π / 2 ) − π ) ≤ 𝑥 ↔ ( ( π / 2 ) − 𝑥 ) ≤ π ) ) |
27 |
3 25 7 26
|
mp3an12i |
⊢ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( ( ( π / 2 ) − π ) ≤ 𝑥 ↔ ( ( π / 2 ) − 𝑥 ) ≤ π ) ) |
28 |
24 27
|
mpbid |
⊢ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( ( π / 2 ) − 𝑥 ) ≤ π ) |
29 |
|
0re |
⊢ 0 ∈ ℝ |
30 |
29 25
|
elicc2i |
⊢ ( ( ( π / 2 ) − 𝑥 ) ∈ ( 0 [,] π ) ↔ ( ( ( π / 2 ) − 𝑥 ) ∈ ℝ ∧ 0 ≤ ( ( π / 2 ) − 𝑥 ) ∧ ( ( π / 2 ) − 𝑥 ) ≤ π ) ) |
31 |
9 14 28 30
|
syl3anbrc |
⊢ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( ( π / 2 ) − 𝑥 ) ∈ ( 0 [,] π ) ) |
32 |
31
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) → ( ( π / 2 ) − 𝑥 ) ∈ ( 0 [,] π ) ) |
33 |
29 25
|
elicc2i |
⊢ ( 𝑦 ∈ ( 0 [,] π ) ↔ ( 𝑦 ∈ ℝ ∧ 0 ≤ 𝑦 ∧ 𝑦 ≤ π ) ) |
34 |
33
|
simp1bi |
⊢ ( 𝑦 ∈ ( 0 [,] π ) → 𝑦 ∈ ℝ ) |
35 |
|
resubcl |
⊢ ( ( ( π / 2 ) ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( π / 2 ) − 𝑦 ) ∈ ℝ ) |
36 |
3 34 35
|
sylancr |
⊢ ( 𝑦 ∈ ( 0 [,] π ) → ( ( π / 2 ) − 𝑦 ) ∈ ℝ ) |
37 |
33
|
simp3bi |
⊢ ( 𝑦 ∈ ( 0 [,] π ) → 𝑦 ≤ π ) |
38 |
15 15
|
subnegi |
⊢ ( ( π / 2 ) − - ( π / 2 ) ) = ( ( π / 2 ) + ( π / 2 ) ) |
39 |
38 19
|
eqtri |
⊢ ( ( π / 2 ) − - ( π / 2 ) ) = π |
40 |
37 39
|
breqtrrdi |
⊢ ( 𝑦 ∈ ( 0 [,] π ) → 𝑦 ≤ ( ( π / 2 ) − - ( π / 2 ) ) ) |
41 |
|
lesub |
⊢ ( ( 𝑦 ∈ ℝ ∧ ( π / 2 ) ∈ ℝ ∧ - ( π / 2 ) ∈ ℝ ) → ( 𝑦 ≤ ( ( π / 2 ) − - ( π / 2 ) ) ↔ - ( π / 2 ) ≤ ( ( π / 2 ) − 𝑦 ) ) ) |
42 |
3 4 41
|
mp3an23 |
⊢ ( 𝑦 ∈ ℝ → ( 𝑦 ≤ ( ( π / 2 ) − - ( π / 2 ) ) ↔ - ( π / 2 ) ≤ ( ( π / 2 ) − 𝑦 ) ) ) |
43 |
34 42
|
syl |
⊢ ( 𝑦 ∈ ( 0 [,] π ) → ( 𝑦 ≤ ( ( π / 2 ) − - ( π / 2 ) ) ↔ - ( π / 2 ) ≤ ( ( π / 2 ) − 𝑦 ) ) ) |
44 |
40 43
|
mpbid |
⊢ ( 𝑦 ∈ ( 0 [,] π ) → - ( π / 2 ) ≤ ( ( π / 2 ) − 𝑦 ) ) |
45 |
15
|
subidi |
⊢ ( ( π / 2 ) − ( π / 2 ) ) = 0 |
46 |
33
|
simp2bi |
⊢ ( 𝑦 ∈ ( 0 [,] π ) → 0 ≤ 𝑦 ) |
47 |
45 46
|
eqbrtrid |
⊢ ( 𝑦 ∈ ( 0 [,] π ) → ( ( π / 2 ) − ( π / 2 ) ) ≤ 𝑦 ) |
48 |
|
suble |
⊢ ( ( ( π / 2 ) ∈ ℝ ∧ ( π / 2 ) ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( π / 2 ) − ( π / 2 ) ) ≤ 𝑦 ↔ ( ( π / 2 ) − 𝑦 ) ≤ ( π / 2 ) ) ) |
49 |
3 3 34 48
|
mp3an12i |
⊢ ( 𝑦 ∈ ( 0 [,] π ) → ( ( ( π / 2 ) − ( π / 2 ) ) ≤ 𝑦 ↔ ( ( π / 2 ) − 𝑦 ) ≤ ( π / 2 ) ) ) |
50 |
47 49
|
mpbid |
⊢ ( 𝑦 ∈ ( 0 [,] π ) → ( ( π / 2 ) − 𝑦 ) ≤ ( π / 2 ) ) |
51 |
4 3
|
elicc2i |
⊢ ( ( ( π / 2 ) − 𝑦 ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↔ ( ( ( π / 2 ) − 𝑦 ) ∈ ℝ ∧ - ( π / 2 ) ≤ ( ( π / 2 ) − 𝑦 ) ∧ ( ( π / 2 ) − 𝑦 ) ≤ ( π / 2 ) ) ) |
52 |
36 44 50 51
|
syl3anbrc |
⊢ ( 𝑦 ∈ ( 0 [,] π ) → ( ( π / 2 ) − 𝑦 ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
53 |
52
|
adantl |
⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 0 [,] π ) ) → ( ( π / 2 ) − 𝑦 ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
54 |
|
iccssre |
⊢ ( ( 0 ∈ ℝ ∧ π ∈ ℝ ) → ( 0 [,] π ) ⊆ ℝ ) |
55 |
29 25 54
|
mp2an |
⊢ ( 0 [,] π ) ⊆ ℝ |
56 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
57 |
55 56
|
sstri |
⊢ ( 0 [,] π ) ⊆ ℂ |
58 |
57
|
sseli |
⊢ ( 𝑦 ∈ ( 0 [,] π ) → 𝑦 ∈ ℂ ) |
59 |
6 56
|
sstri |
⊢ ( - ( π / 2 ) [,] ( π / 2 ) ) ⊆ ℂ |
60 |
59
|
sseli |
⊢ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → 𝑥 ∈ ℂ ) |
61 |
|
subsub23 |
⊢ ( ( ( π / 2 ) ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( ( ( π / 2 ) − 𝑦 ) = 𝑥 ↔ ( ( π / 2 ) − 𝑥 ) = 𝑦 ) ) |
62 |
15 61
|
mp3an1 |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( ( ( π / 2 ) − 𝑦 ) = 𝑥 ↔ ( ( π / 2 ) − 𝑥 ) = 𝑦 ) ) |
63 |
58 60 62
|
syl2anr |
⊢ ( ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,] π ) ) → ( ( ( π / 2 ) − 𝑦 ) = 𝑥 ↔ ( ( π / 2 ) − 𝑥 ) = 𝑦 ) ) |
64 |
63
|
adantl |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,] π ) ) ) → ( ( ( π / 2 ) − 𝑦 ) = 𝑥 ↔ ( ( π / 2 ) − 𝑥 ) = 𝑦 ) ) |
65 |
|
eqcom |
⊢ ( 𝑥 = ( ( π / 2 ) − 𝑦 ) ↔ ( ( π / 2 ) − 𝑦 ) = 𝑥 ) |
66 |
|
eqcom |
⊢ ( 𝑦 = ( ( π / 2 ) − 𝑥 ) ↔ ( ( π / 2 ) − 𝑥 ) = 𝑦 ) |
67 |
64 65 66
|
3bitr4g |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,] π ) ) ) → ( 𝑥 = ( ( π / 2 ) − 𝑦 ) ↔ 𝑦 = ( ( π / 2 ) − 𝑥 ) ) ) |
68 |
2 32 53 67
|
f1o2d |
⊢ ( ⊤ → ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( 0 [,] π ) ) |
69 |
68
|
mptru |
⊢ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( 0 [,] π ) |
70 |
|
f1oco |
⊢ ( ( ( cos ↾ ( 0 [,] π ) ) : ( 0 [,] π ) –1-1-onto→ ( - 1 [,] 1 ) ∧ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( 0 [,] π ) ) → ( ( cos ↾ ( 0 [,] π ) ) ∘ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) ) |
71 |
1 69 70
|
mp2an |
⊢ ( ( cos ↾ ( 0 [,] π ) ) ∘ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) |
72 |
|
cosf |
⊢ cos : ℂ ⟶ ℂ |
73 |
|
ffn |
⊢ ( cos : ℂ ⟶ ℂ → cos Fn ℂ ) |
74 |
72 73
|
ax-mp |
⊢ cos Fn ℂ |
75 |
|
fnssres |
⊢ ( ( cos Fn ℂ ∧ ( 0 [,] π ) ⊆ ℂ ) → ( cos ↾ ( 0 [,] π ) ) Fn ( 0 [,] π ) ) |
76 |
74 57 75
|
mp2an |
⊢ ( cos ↾ ( 0 [,] π ) ) Fn ( 0 [,] π ) |
77 |
2 31
|
fmpti |
⊢ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) ⟶ ( 0 [,] π ) |
78 |
|
fnfco |
⊢ ( ( ( cos ↾ ( 0 [,] π ) ) Fn ( 0 [,] π ) ∧ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) ⟶ ( 0 [,] π ) ) → ( ( cos ↾ ( 0 [,] π ) ) ∘ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ) Fn ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
79 |
76 77 78
|
mp2an |
⊢ ( ( cos ↾ ( 0 [,] π ) ) ∘ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ) Fn ( - ( π / 2 ) [,] ( π / 2 ) ) |
80 |
|
sinf |
⊢ sin : ℂ ⟶ ℂ |
81 |
|
ffn |
⊢ ( sin : ℂ ⟶ ℂ → sin Fn ℂ ) |
82 |
80 81
|
ax-mp |
⊢ sin Fn ℂ |
83 |
|
fnssres |
⊢ ( ( sin Fn ℂ ∧ ( - ( π / 2 ) [,] ( π / 2 ) ) ⊆ ℂ ) → ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) Fn ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
84 |
82 59 83
|
mp2an |
⊢ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) Fn ( - ( π / 2 ) [,] ( π / 2 ) ) |
85 |
|
eqfnfv |
⊢ ( ( ( ( cos ↾ ( 0 [,] π ) ) ∘ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ) Fn ( - ( π / 2 ) [,] ( π / 2 ) ) ∧ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) Fn ( - ( π / 2 ) [,] ( π / 2 ) ) ) → ( ( ( cos ↾ ( 0 [,] π ) ) ∘ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ) = ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ↔ ∀ 𝑦 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ( ( ( cos ↾ ( 0 [,] π ) ) ∘ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ) ‘ 𝑦 ) = ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝑦 ) ) ) |
86 |
79 84 85
|
mp2an |
⊢ ( ( ( cos ↾ ( 0 [,] π ) ) ∘ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ) = ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ↔ ∀ 𝑦 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ( ( ( cos ↾ ( 0 [,] π ) ) ∘ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ) ‘ 𝑦 ) = ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝑦 ) ) |
87 |
77
|
ffvelrni |
⊢ ( 𝑦 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ‘ 𝑦 ) ∈ ( 0 [,] π ) ) |
88 |
87
|
fvresd |
⊢ ( 𝑦 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( ( cos ↾ ( 0 [,] π ) ) ‘ ( ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ‘ 𝑦 ) ) = ( cos ‘ ( ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ‘ 𝑦 ) ) ) |
89 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( π / 2 ) − 𝑥 ) = ( ( π / 2 ) − 𝑦 ) ) |
90 |
|
ovex |
⊢ ( ( π / 2 ) − 𝑦 ) ∈ V |
91 |
89 2 90
|
fvmpt |
⊢ ( 𝑦 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ‘ 𝑦 ) = ( ( π / 2 ) − 𝑦 ) ) |
92 |
91
|
fveq2d |
⊢ ( 𝑦 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( cos ‘ ( ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ‘ 𝑦 ) ) = ( cos ‘ ( ( π / 2 ) − 𝑦 ) ) ) |
93 |
59
|
sseli |
⊢ ( 𝑦 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → 𝑦 ∈ ℂ ) |
94 |
|
coshalfpim |
⊢ ( 𝑦 ∈ ℂ → ( cos ‘ ( ( π / 2 ) − 𝑦 ) ) = ( sin ‘ 𝑦 ) ) |
95 |
93 94
|
syl |
⊢ ( 𝑦 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( cos ‘ ( ( π / 2 ) − 𝑦 ) ) = ( sin ‘ 𝑦 ) ) |
96 |
88 92 95
|
3eqtrd |
⊢ ( 𝑦 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( ( cos ↾ ( 0 [,] π ) ) ‘ ( ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ‘ 𝑦 ) ) = ( sin ‘ 𝑦 ) ) |
97 |
|
fvco3 |
⊢ ( ( ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) ⟶ ( 0 [,] π ) ∧ 𝑦 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) → ( ( ( cos ↾ ( 0 [,] π ) ) ∘ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ) ‘ 𝑦 ) = ( ( cos ↾ ( 0 [,] π ) ) ‘ ( ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ‘ 𝑦 ) ) ) |
98 |
77 97
|
mpan |
⊢ ( 𝑦 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( ( ( cos ↾ ( 0 [,] π ) ) ∘ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ) ‘ 𝑦 ) = ( ( cos ↾ ( 0 [,] π ) ) ‘ ( ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ‘ 𝑦 ) ) ) |
99 |
|
fvres |
⊢ ( 𝑦 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝑦 ) = ( sin ‘ 𝑦 ) ) |
100 |
96 98 99
|
3eqtr4d |
⊢ ( 𝑦 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( ( ( cos ↾ ( 0 [,] π ) ) ∘ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ) ‘ 𝑦 ) = ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝑦 ) ) |
101 |
86 100
|
mprgbir |
⊢ ( ( cos ↾ ( 0 [,] π ) ) ∘ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ) = ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
102 |
|
f1oeq1 |
⊢ ( ( ( cos ↾ ( 0 [,] π ) ) ∘ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ) = ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) → ( ( ( cos ↾ ( 0 [,] π ) ) ∘ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) ↔ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) ) ) |
103 |
101 102
|
ax-mp |
⊢ ( ( ( cos ↾ ( 0 [,] π ) ) ∘ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↦ ( ( π / 2 ) − 𝑥 ) ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) ↔ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) ) |
104 |
71 103
|
mpbi |
⊢ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) |