Step |
Hyp |
Ref |
Expression |
1 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
2 |
|
sinhval |
⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ ( i · 𝐴 ) ) / i ) = ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) |
3 |
1 2
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( ( sin ‘ ( i · 𝐴 ) ) / i ) = ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) |
4 |
|
reefcl |
⊢ ( 𝐴 ∈ ℝ → ( exp ‘ 𝐴 ) ∈ ℝ ) |
5 |
|
renegcl |
⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) |
6 |
5
|
reefcld |
⊢ ( 𝐴 ∈ ℝ → ( exp ‘ - 𝐴 ) ∈ ℝ ) |
7 |
4 6
|
resubcld |
⊢ ( 𝐴 ∈ ℝ → ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) ∈ ℝ ) |
8 |
7
|
rehalfcld |
⊢ ( 𝐴 ∈ ℝ → ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ∈ ℝ ) |
9 |
3 8
|
eqeltrd |
⊢ ( 𝐴 ∈ ℝ → ( ( sin ‘ ( i · 𝐴 ) ) / i ) ∈ ℝ ) |