| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recn | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | sinhval | ⊢ ( 𝐴  ∈  ℂ  →  ( ( sin ‘ ( i  ·  𝐴 ) )  /  i )  =  ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  /  2 ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝐴  ∈  ℝ  →  ( ( sin ‘ ( i  ·  𝐴 ) )  /  i )  =  ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  /  2 ) ) | 
						
							| 4 |  | reefcl | ⊢ ( 𝐴  ∈  ℝ  →  ( exp ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 5 |  | renegcl | ⊢ ( 𝐴  ∈  ℝ  →  - 𝐴  ∈  ℝ ) | 
						
							| 6 | 5 | reefcld | ⊢ ( 𝐴  ∈  ℝ  →  ( exp ‘ - 𝐴 )  ∈  ℝ ) | 
						
							| 7 | 4 6 | resubcld | ⊢ ( 𝐴  ∈  ℝ  →  ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  ∈  ℝ ) | 
						
							| 8 | 7 | rehalfcld | ⊢ ( 𝐴  ∈  ℝ  →  ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  /  2 )  ∈  ℝ ) | 
						
							| 9 | 3 8 | eqeltrd | ⊢ ( 𝐴  ∈  ℝ  →  ( ( sin ‘ ( i  ·  𝐴 ) )  /  i )  ∈  ℝ ) |