| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-icn |
⊢ i ∈ ℂ |
| 2 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
| 3 |
|
cjmul |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ∗ ‘ ( i · 𝐴 ) ) = ( ( ∗ ‘ i ) · ( ∗ ‘ 𝐴 ) ) ) |
| 4 |
1 2 3
|
sylancr |
⊢ ( 𝐴 ∈ ℝ → ( ∗ ‘ ( i · 𝐴 ) ) = ( ( ∗ ‘ i ) · ( ∗ ‘ 𝐴 ) ) ) |
| 5 |
|
cji |
⊢ ( ∗ ‘ i ) = - i |
| 6 |
5
|
oveq1i |
⊢ ( ( ∗ ‘ i ) · ( ∗ ‘ 𝐴 ) ) = ( - i · ( ∗ ‘ 𝐴 ) ) |
| 7 |
|
cjre |
⊢ ( 𝐴 ∈ ℝ → ( ∗ ‘ 𝐴 ) = 𝐴 ) |
| 8 |
7
|
oveq2d |
⊢ ( 𝐴 ∈ ℝ → ( - i · ( ∗ ‘ 𝐴 ) ) = ( - i · 𝐴 ) ) |
| 9 |
6 8
|
eqtrid |
⊢ ( 𝐴 ∈ ℝ → ( ( ∗ ‘ i ) · ( ∗ ‘ 𝐴 ) ) = ( - i · 𝐴 ) ) |
| 10 |
4 9
|
eqtrd |
⊢ ( 𝐴 ∈ ℝ → ( ∗ ‘ ( i · 𝐴 ) ) = ( - i · 𝐴 ) ) |
| 11 |
10
|
fveq2d |
⊢ ( 𝐴 ∈ ℝ → ( exp ‘ ( ∗ ‘ ( i · 𝐴 ) ) ) = ( exp ‘ ( - i · 𝐴 ) ) ) |
| 12 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) |
| 13 |
1 2 12
|
sylancr |
⊢ ( 𝐴 ∈ ℝ → ( i · 𝐴 ) ∈ ℂ ) |
| 14 |
|
efcj |
⊢ ( ( i · 𝐴 ) ∈ ℂ → ( exp ‘ ( ∗ ‘ ( i · 𝐴 ) ) ) = ( ∗ ‘ ( exp ‘ ( i · 𝐴 ) ) ) ) |
| 15 |
13 14
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( exp ‘ ( ∗ ‘ ( i · 𝐴 ) ) ) = ( ∗ ‘ ( exp ‘ ( i · 𝐴 ) ) ) ) |
| 16 |
11 15
|
eqtr3d |
⊢ ( 𝐴 ∈ ℝ → ( exp ‘ ( - i · 𝐴 ) ) = ( ∗ ‘ ( exp ‘ ( i · 𝐴 ) ) ) ) |
| 17 |
16
|
oveq2d |
⊢ ( 𝐴 ∈ ℝ → ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) = ( ( exp ‘ ( i · 𝐴 ) ) − ( ∗ ‘ ( exp ‘ ( i · 𝐴 ) ) ) ) ) |
| 18 |
17
|
oveq1d |
⊢ ( 𝐴 ∈ ℝ → ( ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) / ( 2 · i ) ) = ( ( ( exp ‘ ( i · 𝐴 ) ) − ( ∗ ‘ ( exp ‘ ( i · 𝐴 ) ) ) ) / ( 2 · i ) ) ) |
| 19 |
|
sinval |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) = ( ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) / ( 2 · i ) ) ) |
| 20 |
2 19
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( sin ‘ 𝐴 ) = ( ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) / ( 2 · i ) ) ) |
| 21 |
|
efcl |
⊢ ( ( i · 𝐴 ) ∈ ℂ → ( exp ‘ ( i · 𝐴 ) ) ∈ ℂ ) |
| 22 |
|
imval2 |
⊢ ( ( exp ‘ ( i · 𝐴 ) ) ∈ ℂ → ( ℑ ‘ ( exp ‘ ( i · 𝐴 ) ) ) = ( ( ( exp ‘ ( i · 𝐴 ) ) − ( ∗ ‘ ( exp ‘ ( i · 𝐴 ) ) ) ) / ( 2 · i ) ) ) |
| 23 |
13 21 22
|
3syl |
⊢ ( 𝐴 ∈ ℝ → ( ℑ ‘ ( exp ‘ ( i · 𝐴 ) ) ) = ( ( ( exp ‘ ( i · 𝐴 ) ) − ( ∗ ‘ ( exp ‘ ( i · 𝐴 ) ) ) ) / ( 2 · i ) ) ) |
| 24 |
18 20 23
|
3eqtr4d |
⊢ ( 𝐴 ∈ ℝ → ( sin ‘ 𝐴 ) = ( ℑ ‘ ( exp ‘ ( i · 𝐴 ) ) ) ) |