Description: Distribution of restriction over indexed union. (Contributed by Mario Carneiro, 29-May-2015) (Proof shortened by JJ, 25-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resiun1 | ⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↾ 𝐶 ) = ∪ 𝑥 ∈ 𝐴 ( 𝐵 ↾ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunin1 | ⊢ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∩ ( 𝐶 × V ) ) = ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ ( 𝐶 × V ) ) | |
| 2 | df-res | ⊢ ( 𝐵 ↾ 𝐶 ) = ( 𝐵 ∩ ( 𝐶 × V ) ) | |
| 3 | 2 | a1i | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝐵 ↾ 𝐶 ) = ( 𝐵 ∩ ( 𝐶 × V ) ) ) |
| 4 | 3 | iuneq2i | ⊢ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ↾ 𝐶 ) = ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∩ ( 𝐶 × V ) ) |
| 5 | df-res | ⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↾ 𝐶 ) = ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ ( 𝐶 × V ) ) | |
| 6 | 1 4 5 | 3eqtr4ri | ⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↾ 𝐶 ) = ∪ 𝑥 ∈ 𝐴 ( 𝐵 ↾ 𝐶 ) |