Metamath Proof Explorer


Theorem resiun1

Description: Distribution of restriction over indexed union. (Contributed by Mario Carneiro, 29-May-2015) (Proof shortened by JJ, 25-Aug-2021)

Ref Expression
Assertion resiun1 ( 𝑥𝐴 𝐵𝐶 ) = 𝑥𝐴 ( 𝐵𝐶 )

Proof

Step Hyp Ref Expression
1 iunin1 𝑥𝐴 ( 𝐵 ∩ ( 𝐶 × V ) ) = ( 𝑥𝐴 𝐵 ∩ ( 𝐶 × V ) )
2 df-res ( 𝐵𝐶 ) = ( 𝐵 ∩ ( 𝐶 × V ) )
3 2 a1i ( 𝑥𝐴 → ( 𝐵𝐶 ) = ( 𝐵 ∩ ( 𝐶 × V ) ) )
4 3 iuneq2i 𝑥𝐴 ( 𝐵𝐶 ) = 𝑥𝐴 ( 𝐵 ∩ ( 𝐶 × V ) )
5 df-res ( 𝑥𝐴 𝐵𝐶 ) = ( 𝑥𝐴 𝐵 ∩ ( 𝐶 × V ) )
6 1 4 5 3eqtr4ri ( 𝑥𝐴 𝐵𝐶 ) = 𝑥𝐴 ( 𝐵𝐶 )