| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-res | ⊢ ( 𝐶  ↾  ∪  𝑥  ∈  𝐴 𝐵 )  =  ( 𝐶  ∩  ( ∪  𝑥  ∈  𝐴 𝐵  ×  V ) ) | 
						
							| 2 |  | df-res | ⊢ ( 𝐶  ↾  𝐵 )  =  ( 𝐶  ∩  ( 𝐵  ×  V ) ) | 
						
							| 3 | 2 | a1i | ⊢ ( 𝑥  ∈  𝐴  →  ( 𝐶  ↾  𝐵 )  =  ( 𝐶  ∩  ( 𝐵  ×  V ) ) ) | 
						
							| 4 | 3 | iuneq2i | ⊢ ∪  𝑥  ∈  𝐴 ( 𝐶  ↾  𝐵 )  =  ∪  𝑥  ∈  𝐴 ( 𝐶  ∩  ( 𝐵  ×  V ) ) | 
						
							| 5 |  | xpiundir | ⊢ ( ∪  𝑥  ∈  𝐴 𝐵  ×  V )  =  ∪  𝑥  ∈  𝐴 ( 𝐵  ×  V ) | 
						
							| 6 | 5 | ineq2i | ⊢ ( 𝐶  ∩  ( ∪  𝑥  ∈  𝐴 𝐵  ×  V ) )  =  ( 𝐶  ∩  ∪  𝑥  ∈  𝐴 ( 𝐵  ×  V ) ) | 
						
							| 7 |  | iunin2 | ⊢ ∪  𝑥  ∈  𝐴 ( 𝐶  ∩  ( 𝐵  ×  V ) )  =  ( 𝐶  ∩  ∪  𝑥  ∈  𝐴 ( 𝐵  ×  V ) ) | 
						
							| 8 | 6 7 | eqtr4i | ⊢ ( 𝐶  ∩  ( ∪  𝑥  ∈  𝐴 𝐵  ×  V ) )  =  ∪  𝑥  ∈  𝐴 ( 𝐶  ∩  ( 𝐵  ×  V ) ) | 
						
							| 9 | 4 8 | eqtr4i | ⊢ ∪  𝑥  ∈  𝐴 ( 𝐶  ↾  𝐵 )  =  ( 𝐶  ∩  ( ∪  𝑥  ∈  𝐴 𝐵  ×  V ) ) | 
						
							| 10 | 1 9 | eqtr4i | ⊢ ( 𝐶  ↾  ∪  𝑥  ∈  𝐴 𝐵 )  =  ∪  𝑥  ∈  𝐴 ( 𝐶  ↾  𝐵 ) |