Metamath Proof Explorer


Theorem resiun2

Description: Distribution of restriction over indexed union. (Contributed by Mario Carneiro, 29-May-2015)

Ref Expression
Assertion resiun2 ( 𝐶 𝑥𝐴 𝐵 ) = 𝑥𝐴 ( 𝐶𝐵 )

Proof

Step Hyp Ref Expression
1 df-res ( 𝐶 𝑥𝐴 𝐵 ) = ( 𝐶 ∩ ( 𝑥𝐴 𝐵 × V ) )
2 df-res ( 𝐶𝐵 ) = ( 𝐶 ∩ ( 𝐵 × V ) )
3 2 a1i ( 𝑥𝐴 → ( 𝐶𝐵 ) = ( 𝐶 ∩ ( 𝐵 × V ) ) )
4 3 iuneq2i 𝑥𝐴 ( 𝐶𝐵 ) = 𝑥𝐴 ( 𝐶 ∩ ( 𝐵 × V ) )
5 xpiundir ( 𝑥𝐴 𝐵 × V ) = 𝑥𝐴 ( 𝐵 × V )
6 5 ineq2i ( 𝐶 ∩ ( 𝑥𝐴 𝐵 × V ) ) = ( 𝐶 𝑥𝐴 ( 𝐵 × V ) )
7 iunin2 𝑥𝐴 ( 𝐶 ∩ ( 𝐵 × V ) ) = ( 𝐶 𝑥𝐴 ( 𝐵 × V ) )
8 6 7 eqtr4i ( 𝐶 ∩ ( 𝑥𝐴 𝐵 × V ) ) = 𝑥𝐴 ( 𝐶 ∩ ( 𝐵 × V ) )
9 4 8 eqtr4i 𝑥𝐴 ( 𝐶𝐵 ) = ( 𝐶 ∩ ( 𝑥𝐴 𝐵 × V ) )
10 1 9 eqtr4i ( 𝐶 𝑥𝐴 𝐵 ) = 𝑥𝐴 ( 𝐶𝐵 )