| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resexg | ⊢ ( 𝐹  ∈  X 𝑥  ∈  𝐴 𝐶  →  ( 𝐹  ↾  𝐵 )  ∈  V ) | 
						
							| 2 | 1 | adantl | ⊢ ( ( 𝐵  ⊆  𝐴  ∧  𝐹  ∈  X 𝑥  ∈  𝐴 𝐶 )  →  ( 𝐹  ↾  𝐵 )  ∈  V ) | 
						
							| 3 |  | simpr | ⊢ ( ( 𝐵  ⊆  𝐴  ∧  𝐹  ∈  X 𝑥  ∈  𝐴 𝐶 )  →  𝐹  ∈  X 𝑥  ∈  𝐴 𝐶 ) | 
						
							| 4 |  | elixp2 | ⊢ ( 𝐹  ∈  X 𝑥  ∈  𝐴 𝐶  ↔  ( 𝐹  ∈  V  ∧  𝐹  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  ∈  𝐶 ) ) | 
						
							| 5 | 3 4 | sylib | ⊢ ( ( 𝐵  ⊆  𝐴  ∧  𝐹  ∈  X 𝑥  ∈  𝐴 𝐶 )  →  ( 𝐹  ∈  V  ∧  𝐹  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  ∈  𝐶 ) ) | 
						
							| 6 | 5 | simp2d | ⊢ ( ( 𝐵  ⊆  𝐴  ∧  𝐹  ∈  X 𝑥  ∈  𝐴 𝐶 )  →  𝐹  Fn  𝐴 ) | 
						
							| 7 |  | simpl | ⊢ ( ( 𝐵  ⊆  𝐴  ∧  𝐹  ∈  X 𝑥  ∈  𝐴 𝐶 )  →  𝐵  ⊆  𝐴 ) | 
						
							| 8 |  | fnssres | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐵  ⊆  𝐴 )  →  ( 𝐹  ↾  𝐵 )  Fn  𝐵 ) | 
						
							| 9 | 6 7 8 | syl2anc | ⊢ ( ( 𝐵  ⊆  𝐴  ∧  𝐹  ∈  X 𝑥  ∈  𝐴 𝐶 )  →  ( 𝐹  ↾  𝐵 )  Fn  𝐵 ) | 
						
							| 10 | 5 | simp3d | ⊢ ( ( 𝐵  ⊆  𝐴  ∧  𝐹  ∈  X 𝑥  ∈  𝐴 𝐶 )  →  ∀ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  ∈  𝐶 ) | 
						
							| 11 |  | ssralv | ⊢ ( 𝐵  ⊆  𝐴  →  ( ∀ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  ∈  𝐶  →  ∀ 𝑥  ∈  𝐵 ( 𝐹 ‘ 𝑥 )  ∈  𝐶 ) ) | 
						
							| 12 | 7 10 11 | sylc | ⊢ ( ( 𝐵  ⊆  𝐴  ∧  𝐹  ∈  X 𝑥  ∈  𝐴 𝐶 )  →  ∀ 𝑥  ∈  𝐵 ( 𝐹 ‘ 𝑥 )  ∈  𝐶 ) | 
						
							| 13 |  | fvres | ⊢ ( 𝑥  ∈  𝐵  →  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 14 | 13 | eleq1d | ⊢ ( 𝑥  ∈  𝐵  →  ( ( ( 𝐹  ↾  𝐵 ) ‘ 𝑥 )  ∈  𝐶  ↔  ( 𝐹 ‘ 𝑥 )  ∈  𝐶 ) ) | 
						
							| 15 | 14 | ralbiia | ⊢ ( ∀ 𝑥  ∈  𝐵 ( ( 𝐹  ↾  𝐵 ) ‘ 𝑥 )  ∈  𝐶  ↔  ∀ 𝑥  ∈  𝐵 ( 𝐹 ‘ 𝑥 )  ∈  𝐶 ) | 
						
							| 16 | 12 15 | sylibr | ⊢ ( ( 𝐵  ⊆  𝐴  ∧  𝐹  ∈  X 𝑥  ∈  𝐴 𝐶 )  →  ∀ 𝑥  ∈  𝐵 ( ( 𝐹  ↾  𝐵 ) ‘ 𝑥 )  ∈  𝐶 ) | 
						
							| 17 |  | elixp2 | ⊢ ( ( 𝐹  ↾  𝐵 )  ∈  X 𝑥  ∈  𝐵 𝐶  ↔  ( ( 𝐹  ↾  𝐵 )  ∈  V  ∧  ( 𝐹  ↾  𝐵 )  Fn  𝐵  ∧  ∀ 𝑥  ∈  𝐵 ( ( 𝐹  ↾  𝐵 ) ‘ 𝑥 )  ∈  𝐶 ) ) | 
						
							| 18 | 2 9 16 17 | syl3anbrc | ⊢ ( ( 𝐵  ⊆  𝐴  ∧  𝐹  ∈  X 𝑥  ∈  𝐴 𝐶 )  →  ( 𝐹  ↾  𝐵 )  ∈  X 𝑥  ∈  𝐵 𝐶 ) |