Metamath Proof Explorer


Theorem resixp

Description: Restriction of an element of an infinite Cartesian product. (Contributed by FL, 7-Nov-2011) (Proof shortened by Mario Carneiro, 31-May-2014)

Ref Expression
Assertion resixp ( ( 𝐵𝐴𝐹X 𝑥𝐴 𝐶 ) → ( 𝐹𝐵 ) ∈ X 𝑥𝐵 𝐶 )

Proof

Step Hyp Ref Expression
1 resexg ( 𝐹X 𝑥𝐴 𝐶 → ( 𝐹𝐵 ) ∈ V )
2 1 adantl ( ( 𝐵𝐴𝐹X 𝑥𝐴 𝐶 ) → ( 𝐹𝐵 ) ∈ V )
3 simpr ( ( 𝐵𝐴𝐹X 𝑥𝐴 𝐶 ) → 𝐹X 𝑥𝐴 𝐶 )
4 elixp2 ( 𝐹X 𝑥𝐴 𝐶 ↔ ( 𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ 𝐶 ) )
5 3 4 sylib ( ( 𝐵𝐴𝐹X 𝑥𝐴 𝐶 ) → ( 𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ 𝐶 ) )
6 5 simp2d ( ( 𝐵𝐴𝐹X 𝑥𝐴 𝐶 ) → 𝐹 Fn 𝐴 )
7 simpl ( ( 𝐵𝐴𝐹X 𝑥𝐴 𝐶 ) → 𝐵𝐴 )
8 fnssres ( ( 𝐹 Fn 𝐴𝐵𝐴 ) → ( 𝐹𝐵 ) Fn 𝐵 )
9 6 7 8 syl2anc ( ( 𝐵𝐴𝐹X 𝑥𝐴 𝐶 ) → ( 𝐹𝐵 ) Fn 𝐵 )
10 5 simp3d ( ( 𝐵𝐴𝐹X 𝑥𝐴 𝐶 ) → ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ 𝐶 )
11 ssralv ( 𝐵𝐴 → ( ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ 𝐶 → ∀ 𝑥𝐵 ( 𝐹𝑥 ) ∈ 𝐶 ) )
12 7 10 11 sylc ( ( 𝐵𝐴𝐹X 𝑥𝐴 𝐶 ) → ∀ 𝑥𝐵 ( 𝐹𝑥 ) ∈ 𝐶 )
13 fvres ( 𝑥𝐵 → ( ( 𝐹𝐵 ) ‘ 𝑥 ) = ( 𝐹𝑥 ) )
14 13 eleq1d ( 𝑥𝐵 → ( ( ( 𝐹𝐵 ) ‘ 𝑥 ) ∈ 𝐶 ↔ ( 𝐹𝑥 ) ∈ 𝐶 ) )
15 14 ralbiia ( ∀ 𝑥𝐵 ( ( 𝐹𝐵 ) ‘ 𝑥 ) ∈ 𝐶 ↔ ∀ 𝑥𝐵 ( 𝐹𝑥 ) ∈ 𝐶 )
16 12 15 sylibr ( ( 𝐵𝐴𝐹X 𝑥𝐴 𝐶 ) → ∀ 𝑥𝐵 ( ( 𝐹𝐵 ) ‘ 𝑥 ) ∈ 𝐶 )
17 elixp2 ( ( 𝐹𝐵 ) ∈ X 𝑥𝐵 𝐶 ↔ ( ( 𝐹𝐵 ) ∈ V ∧ ( 𝐹𝐵 ) Fn 𝐵 ∧ ∀ 𝑥𝐵 ( ( 𝐹𝐵 ) ‘ 𝑥 ) ∈ 𝐶 ) )
18 2 9 16 17 syl3anbrc ( ( 𝐵𝐴𝐹X 𝑥𝐴 𝐶 ) → ( 𝐹𝐵 ) ∈ X 𝑥𝐵 𝐶 )