Step |
Hyp |
Ref |
Expression |
1 |
|
resixpfo.1 |
⊢ 𝐹 = ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐶 ↦ ( 𝑓 ↾ 𝐵 ) ) |
2 |
|
resixp |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → ( 𝑓 ↾ 𝐵 ) ∈ X 𝑥 ∈ 𝐵 𝐶 ) |
3 |
2 1
|
fmptd |
⊢ ( 𝐵 ⊆ 𝐴 → 𝐹 : X 𝑥 ∈ 𝐴 𝐶 ⟶ X 𝑥 ∈ 𝐵 𝐶 ) |
4 |
3
|
adantr |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ X 𝑥 ∈ 𝐴 𝐶 ≠ ∅ ) → 𝐹 : X 𝑥 ∈ 𝐴 𝐶 ⟶ X 𝑥 ∈ 𝐵 𝐶 ) |
5 |
|
n0 |
⊢ ( X 𝑥 ∈ 𝐴 𝐶 ≠ ∅ ↔ ∃ 𝑔 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐶 ) |
6 |
|
eleq1w |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵 ) ) |
7 |
6
|
ifbid |
⊢ ( 𝑧 = 𝑥 → if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) = if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) ) |
8 |
|
id |
⊢ ( 𝑧 = 𝑥 → 𝑧 = 𝑥 ) |
9 |
7 8
|
fveq12d |
⊢ ( 𝑧 = 𝑥 → ( if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑧 ) = ( if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑥 ) ) |
10 |
9
|
cbvmptv |
⊢ ( 𝑧 ∈ 𝐴 ↦ ( if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑧 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑥 ) ) |
11 |
|
vex |
⊢ ℎ ∈ V |
12 |
11
|
elixp |
⊢ ( ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ↔ ( ℎ Fn 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ℎ ‘ 𝑥 ) ∈ 𝐶 ) ) |
13 |
12
|
simprbi |
⊢ ( ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 → ∀ 𝑥 ∈ 𝐵 ( ℎ ‘ 𝑥 ) ∈ 𝐶 ) |
14 |
|
fveq1 |
⊢ ( ℎ = if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) → ( ℎ ‘ 𝑥 ) = ( if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑥 ) ) |
15 |
14
|
eleq1d |
⊢ ( ℎ = if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) → ( ( ℎ ‘ 𝑥 ) ∈ 𝐶 ↔ ( if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑥 ) ∈ 𝐶 ) ) |
16 |
|
fveq1 |
⊢ ( 𝑔 = if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) → ( 𝑔 ‘ 𝑥 ) = ( if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑥 ) ) |
17 |
16
|
eleq1d |
⊢ ( 𝑔 = if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) → ( ( 𝑔 ‘ 𝑥 ) ∈ 𝐶 ↔ ( if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑥 ) ∈ 𝐶 ) ) |
18 |
|
simpl |
⊢ ( ( ( 𝑥 ∈ 𝐵 → ( ℎ ‘ 𝑥 ) ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝐶 ) ) → ( 𝑥 ∈ 𝐵 → ( ℎ ‘ 𝑥 ) ∈ 𝐶 ) ) |
19 |
18
|
imp |
⊢ ( ( ( ( 𝑥 ∈ 𝐵 → ( ℎ ‘ 𝑥 ) ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝐶 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ℎ ‘ 𝑥 ) ∈ 𝐶 ) |
20 |
|
simplrr |
⊢ ( ( ( ( 𝑥 ∈ 𝐵 → ( ℎ ‘ 𝑥 ) ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝐶 ) ) ∧ ¬ 𝑥 ∈ 𝐵 ) → ( 𝑔 ‘ 𝑥 ) ∈ 𝐶 ) |
21 |
15 17 19 20
|
ifbothda |
⊢ ( ( ( 𝑥 ∈ 𝐵 → ( ℎ ‘ 𝑥 ) ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝐶 ) ) → ( if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑥 ) ∈ 𝐶 ) |
22 |
21
|
exp32 |
⊢ ( ( 𝑥 ∈ 𝐵 → ( ℎ ‘ 𝑥 ) ∈ 𝐶 ) → ( 𝑥 ∈ 𝐴 → ( ( 𝑔 ‘ 𝑥 ) ∈ 𝐶 → ( if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑥 ) ∈ 𝐶 ) ) ) |
23 |
22
|
ralimi2 |
⊢ ( ∀ 𝑥 ∈ 𝐵 ( ℎ ‘ 𝑥 ) ∈ 𝐶 → ∀ 𝑥 ∈ 𝐴 ( ( 𝑔 ‘ 𝑥 ) ∈ 𝐶 → ( if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑥 ) ∈ 𝐶 ) ) |
24 |
13 23
|
syl |
⊢ ( ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 → ∀ 𝑥 ∈ 𝐴 ( ( 𝑔 ‘ 𝑥 ) ∈ 𝐶 → ( if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑥 ) ∈ 𝐶 ) ) |
25 |
24
|
adantl |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ) → ∀ 𝑥 ∈ 𝐴 ( ( 𝑔 ‘ 𝑥 ) ∈ 𝐶 → ( if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑥 ) ∈ 𝐶 ) ) |
26 |
|
ralim |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( ( 𝑔 ‘ 𝑥 ) ∈ 𝐶 → ( if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑥 ) ∈ 𝐶 ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝐶 → ∀ 𝑥 ∈ 𝐴 ( if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑥 ) ∈ 𝐶 ) ) |
27 |
25 26
|
syl |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝐶 → ∀ 𝑥 ∈ 𝐴 ( if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑥 ) ∈ 𝐶 ) ) |
28 |
|
vex |
⊢ 𝑔 ∈ V |
29 |
28
|
elixp |
⊢ ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐶 ↔ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝐶 ) ) |
30 |
29
|
simprbi |
⊢ ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐶 → ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝐶 ) |
31 |
27 30
|
impel |
⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ) ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → ∀ 𝑥 ∈ 𝐴 ( if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑥 ) ∈ 𝐶 ) |
32 |
|
n0i |
⊢ ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐶 → ¬ X 𝑥 ∈ 𝐴 𝐶 = ∅ ) |
33 |
|
ixpprc |
⊢ ( ¬ 𝐴 ∈ V → X 𝑥 ∈ 𝐴 𝐶 = ∅ ) |
34 |
32 33
|
nsyl2 |
⊢ ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐶 → 𝐴 ∈ V ) |
35 |
34
|
adantl |
⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ) ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → 𝐴 ∈ V ) |
36 |
|
mptelixpg |
⊢ ( 𝐴 ∈ V → ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑥 ) ) ∈ X 𝑥 ∈ 𝐴 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ( if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑥 ) ∈ 𝐶 ) ) |
37 |
35 36
|
syl |
⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ) ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → ( ( 𝑥 ∈ 𝐴 ↦ ( if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑥 ) ) ∈ X 𝑥 ∈ 𝐴 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ( if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑥 ) ∈ 𝐶 ) ) |
38 |
31 37
|
mpbird |
⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ) ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → ( 𝑥 ∈ 𝐴 ↦ ( if ( 𝑥 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑥 ) ) ∈ X 𝑥 ∈ 𝐴 𝐶 ) |
39 |
10 38
|
eqeltrid |
⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ) ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → ( 𝑧 ∈ 𝐴 ↦ ( if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑧 ) ) ∈ X 𝑥 ∈ 𝐴 𝐶 ) |
40 |
|
reseq1 |
⊢ ( 𝑓 = ( 𝑧 ∈ 𝐴 ↦ ( if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑧 ) ) → ( 𝑓 ↾ 𝐵 ) = ( ( 𝑧 ∈ 𝐴 ↦ ( if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑧 ) ) ↾ 𝐵 ) ) |
41 |
|
iftrue |
⊢ ( 𝑧 ∈ 𝐵 → if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) = ℎ ) |
42 |
41
|
fveq1d |
⊢ ( 𝑧 ∈ 𝐵 → ( if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑧 ) = ( ℎ ‘ 𝑧 ) ) |
43 |
42
|
mpteq2ia |
⊢ ( 𝑧 ∈ 𝐵 ↦ ( if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑧 ) ) = ( 𝑧 ∈ 𝐵 ↦ ( ℎ ‘ 𝑧 ) ) |
44 |
|
resmpt |
⊢ ( 𝐵 ⊆ 𝐴 → ( ( 𝑧 ∈ 𝐴 ↦ ( if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑧 ) ) ↾ 𝐵 ) = ( 𝑧 ∈ 𝐵 ↦ ( if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑧 ) ) ) |
45 |
44
|
ad2antrr |
⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ) ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → ( ( 𝑧 ∈ 𝐴 ↦ ( if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑧 ) ) ↾ 𝐵 ) = ( 𝑧 ∈ 𝐵 ↦ ( if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑧 ) ) ) |
46 |
|
ixpfn |
⊢ ( ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 → ℎ Fn 𝐵 ) |
47 |
46
|
ad2antlr |
⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ) ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → ℎ Fn 𝐵 ) |
48 |
|
dffn5 |
⊢ ( ℎ Fn 𝐵 ↔ ℎ = ( 𝑧 ∈ 𝐵 ↦ ( ℎ ‘ 𝑧 ) ) ) |
49 |
47 48
|
sylib |
⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ) ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → ℎ = ( 𝑧 ∈ 𝐵 ↦ ( ℎ ‘ 𝑧 ) ) ) |
50 |
43 45 49
|
3eqtr4a |
⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ) ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → ( ( 𝑧 ∈ 𝐴 ↦ ( if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑧 ) ) ↾ 𝐵 ) = ℎ ) |
51 |
50 11
|
eqeltrdi |
⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ) ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → ( ( 𝑧 ∈ 𝐴 ↦ ( if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑧 ) ) ↾ 𝐵 ) ∈ V ) |
52 |
1 40 39 51
|
fvmptd3 |
⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ) ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → ( 𝐹 ‘ ( 𝑧 ∈ 𝐴 ↦ ( if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑧 ) ) ) = ( ( 𝑧 ∈ 𝐴 ↦ ( if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑧 ) ) ↾ 𝐵 ) ) |
53 |
52 50
|
eqtr2d |
⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ) ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → ℎ = ( 𝐹 ‘ ( 𝑧 ∈ 𝐴 ↦ ( if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑧 ) ) ) ) |
54 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑧 ∈ 𝐴 ↦ ( if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑧 ) ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑧 ∈ 𝐴 ↦ ( if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑧 ) ) ) ) |
55 |
54
|
rspceeqv |
⊢ ( ( ( 𝑧 ∈ 𝐴 ↦ ( if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑧 ) ) ∈ X 𝑥 ∈ 𝐴 𝐶 ∧ ℎ = ( 𝐹 ‘ ( 𝑧 ∈ 𝐴 ↦ ( if ( 𝑧 ∈ 𝐵 , ℎ , 𝑔 ) ‘ 𝑧 ) ) ) ) → ∃ 𝑦 ∈ X 𝑥 ∈ 𝐴 𝐶 ℎ = ( 𝐹 ‘ 𝑦 ) ) |
56 |
39 53 55
|
syl2anc |
⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ) ∧ 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → ∃ 𝑦 ∈ X 𝑥 ∈ 𝐴 𝐶 ℎ = ( 𝐹 ‘ 𝑦 ) ) |
57 |
56
|
ex |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ) → ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐶 → ∃ 𝑦 ∈ X 𝑥 ∈ 𝐴 𝐶 ℎ = ( 𝐹 ‘ 𝑦 ) ) ) |
58 |
57
|
ralrimdva |
⊢ ( 𝐵 ⊆ 𝐴 → ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐶 → ∀ ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ∃ 𝑦 ∈ X 𝑥 ∈ 𝐴 𝐶 ℎ = ( 𝐹 ‘ 𝑦 ) ) ) |
59 |
58
|
exlimdv |
⊢ ( 𝐵 ⊆ 𝐴 → ( ∃ 𝑔 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐶 → ∀ ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ∃ 𝑦 ∈ X 𝑥 ∈ 𝐴 𝐶 ℎ = ( 𝐹 ‘ 𝑦 ) ) ) |
60 |
5 59
|
syl5bi |
⊢ ( 𝐵 ⊆ 𝐴 → ( X 𝑥 ∈ 𝐴 𝐶 ≠ ∅ → ∀ ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ∃ 𝑦 ∈ X 𝑥 ∈ 𝐴 𝐶 ℎ = ( 𝐹 ‘ 𝑦 ) ) ) |
61 |
60
|
imp |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ X 𝑥 ∈ 𝐴 𝐶 ≠ ∅ ) → ∀ ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ∃ 𝑦 ∈ X 𝑥 ∈ 𝐴 𝐶 ℎ = ( 𝐹 ‘ 𝑦 ) ) |
62 |
|
dffo3 |
⊢ ( 𝐹 : X 𝑥 ∈ 𝐴 𝐶 –onto→ X 𝑥 ∈ 𝐵 𝐶 ↔ ( 𝐹 : X 𝑥 ∈ 𝐴 𝐶 ⟶ X 𝑥 ∈ 𝐵 𝐶 ∧ ∀ ℎ ∈ X 𝑥 ∈ 𝐵 𝐶 ∃ 𝑦 ∈ X 𝑥 ∈ 𝐴 𝐶 ℎ = ( 𝐹 ‘ 𝑦 ) ) ) |
63 |
4 61 62
|
sylanbrc |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ X 𝑥 ∈ 𝐴 𝐶 ≠ ∅ ) → 𝐹 : X 𝑥 ∈ 𝐴 𝐶 –onto→ X 𝑥 ∈ 𝐵 𝐶 ) |