Step |
Hyp |
Ref |
Expression |
1 |
|
reslmhm2.u |
⊢ 𝑈 = ( 𝑇 ↾s 𝑋 ) |
2 |
|
reslmhm2.l |
⊢ 𝐿 = ( LSubSp ‘ 𝑇 ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
4 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑆 ) |
5 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑇 ) = ( ·𝑠 ‘ 𝑇 ) |
6 |
|
eqid |
⊢ ( Scalar ‘ 𝑆 ) = ( Scalar ‘ 𝑆 ) |
7 |
|
eqid |
⊢ ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑇 ) |
8 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑆 ) ) = ( Base ‘ ( Scalar ‘ 𝑆 ) ) |
9 |
|
lmhmlmod1 |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) → 𝑆 ∈ LMod ) |
10 |
9
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ) → 𝑆 ∈ LMod ) |
11 |
|
simp2 |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ) → 𝑇 ∈ LMod ) |
12 |
1 7
|
resssca |
⊢ ( 𝑋 ∈ 𝐿 → ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑈 ) ) |
13 |
12
|
3ad2ant3 |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ) → ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑈 ) ) |
14 |
|
eqid |
⊢ ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) |
15 |
6 14
|
lmhmsca |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) → ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑆 ) ) |
16 |
15
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ) → ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑆 ) ) |
17 |
13 16
|
eqtrd |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ) → ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑆 ) ) |
18 |
|
lmghm |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) ) |
19 |
18
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) ) |
20 |
2
|
lsssubg |
⊢ ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ) → 𝑋 ∈ ( SubGrp ‘ 𝑇 ) ) |
21 |
20
|
3adant1 |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ) → 𝑋 ∈ ( SubGrp ‘ 𝑇 ) ) |
22 |
1
|
resghm2 |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑇 ) ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
23 |
19 21 22
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
24 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑈 ) = ( ·𝑠 ‘ 𝑈 ) |
25 |
6 8 3 4 24
|
lmhmlin |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) |
26 |
25
|
3expb |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) |
27 |
26
|
3ad2antl1 |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) |
28 |
|
simpl3 |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑋 ∈ 𝐿 ) |
29 |
1 5
|
ressvsca |
⊢ ( 𝑋 ∈ 𝐿 → ( ·𝑠 ‘ 𝑇 ) = ( ·𝑠 ‘ 𝑈 ) ) |
30 |
29
|
oveqd |
⊢ ( 𝑋 ∈ 𝐿 → ( 𝑥 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) |
31 |
28 30
|
syl |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) |
32 |
27 31
|
eqtr4d |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
33 |
3 4 5 6 7 8 10 11 17 23 32
|
islmhmd |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ) → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) |