| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reslmhm2.u | ⊢ 𝑈  =  ( 𝑇  ↾s  𝑋 ) | 
						
							| 2 |  | reslmhm2.l | ⊢ 𝐿  =  ( LSubSp ‘ 𝑇 ) | 
						
							| 3 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 4 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑆 )  =  (  ·𝑠  ‘ 𝑆 ) | 
						
							| 5 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑈 )  =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 6 |  | eqid | ⊢ ( Scalar ‘ 𝑆 )  =  ( Scalar ‘ 𝑆 ) | 
						
							| 7 |  | eqid | ⊢ ( Scalar ‘ 𝑈 )  =  ( Scalar ‘ 𝑈 ) | 
						
							| 8 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑆 ) )  =  ( Base ‘ ( Scalar ‘ 𝑆 ) ) | 
						
							| 9 |  | lmhmlmod1 | ⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  𝑆  ∈  LMod ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( ( 𝑇  ∈  LMod  ∧  𝑋  ∈  𝐿  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  →  𝑆  ∈  LMod ) | 
						
							| 11 |  | simpl1 | ⊢ ( ( ( 𝑇  ∈  LMod  ∧  𝑋  ∈  𝐿  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  →  𝑇  ∈  LMod ) | 
						
							| 12 |  | simpl2 | ⊢ ( ( ( 𝑇  ∈  LMod  ∧  𝑋  ∈  𝐿  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  →  𝑋  ∈  𝐿 ) | 
						
							| 13 | 1 2 | lsslmod | ⊢ ( ( 𝑇  ∈  LMod  ∧  𝑋  ∈  𝐿 )  →  𝑈  ∈  LMod ) | 
						
							| 14 | 11 12 13 | syl2anc | ⊢ ( ( ( 𝑇  ∈  LMod  ∧  𝑋  ∈  𝐿  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  →  𝑈  ∈  LMod ) | 
						
							| 15 |  | eqid | ⊢ ( Scalar ‘ 𝑇 )  =  ( Scalar ‘ 𝑇 ) | 
						
							| 16 | 1 15 | resssca | ⊢ ( 𝑋  ∈  𝐿  →  ( Scalar ‘ 𝑇 )  =  ( Scalar ‘ 𝑈 ) ) | 
						
							| 17 | 16 | 3ad2ant2 | ⊢ ( ( 𝑇  ∈  LMod  ∧  𝑋  ∈  𝐿  ∧  ran  𝐹  ⊆  𝑋 )  →  ( Scalar ‘ 𝑇 )  =  ( Scalar ‘ 𝑈 ) ) | 
						
							| 18 | 6 15 | lmhmsca | ⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  ( Scalar ‘ 𝑇 )  =  ( Scalar ‘ 𝑆 ) ) | 
						
							| 19 | 17 18 | sylan9req | ⊢ ( ( ( 𝑇  ∈  LMod  ∧  𝑋  ∈  𝐿  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  →  ( Scalar ‘ 𝑈 )  =  ( Scalar ‘ 𝑆 ) ) | 
						
							| 20 |  | lmghm | ⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) ) | 
						
							| 21 | 2 | lsssubg | ⊢ ( ( 𝑇  ∈  LMod  ∧  𝑋  ∈  𝐿 )  →  𝑋  ∈  ( SubGrp ‘ 𝑇 ) ) | 
						
							| 22 | 1 | resghm2b | ⊢ ( ( 𝑋  ∈  ( SubGrp ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  →  ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ↔  𝐹  ∈  ( 𝑆  GrpHom  𝑈 ) ) ) | 
						
							| 23 | 21 22 | stoic3 | ⊢ ( ( 𝑇  ∈  LMod  ∧  𝑋  ∈  𝐿  ∧  ran  𝐹  ⊆  𝑋 )  →  ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ↔  𝐹  ∈  ( 𝑆  GrpHom  𝑈 ) ) ) | 
						
							| 24 | 23 | biimpa | ⊢ ( ( ( 𝑇  ∈  LMod  ∧  𝑋  ∈  𝐿  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) )  →  𝐹  ∈  ( 𝑆  GrpHom  𝑈 ) ) | 
						
							| 25 | 20 24 | sylan2 | ⊢ ( ( ( 𝑇  ∈  LMod  ∧  𝑋  ∈  𝐿  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  →  𝐹  ∈  ( 𝑆  GrpHom  𝑈 ) ) | 
						
							| 26 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑇 )  =  (  ·𝑠  ‘ 𝑇 ) | 
						
							| 27 | 6 8 3 4 26 | lmhmlin | ⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( 𝐹 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑆 ) 𝑦 ) )  =  ( 𝑥 (  ·𝑠  ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 28 | 27 | 3expb | ⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) ) )  →  ( 𝐹 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑆 ) 𝑦 ) )  =  ( 𝑥 (  ·𝑠  ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 29 | 28 | adantll | ⊢ ( ( ( ( 𝑇  ∈  LMod  ∧  𝑋  ∈  𝐿  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) ) )  →  ( 𝐹 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑆 ) 𝑦 ) )  =  ( 𝑥 (  ·𝑠  ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 30 |  | simpll2 | ⊢ ( ( ( ( 𝑇  ∈  LMod  ∧  𝑋  ∈  𝐿  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) ) )  →  𝑋  ∈  𝐿 ) | 
						
							| 31 | 1 26 | ressvsca | ⊢ ( 𝑋  ∈  𝐿  →  (  ·𝑠  ‘ 𝑇 )  =  (  ·𝑠  ‘ 𝑈 ) ) | 
						
							| 32 | 31 | oveqd | ⊢ ( 𝑋  ∈  𝐿  →  ( 𝑥 (  ·𝑠  ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) )  =  ( 𝑥 (  ·𝑠  ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 33 | 30 32 | syl | ⊢ ( ( ( ( 𝑇  ∈  LMod  ∧  𝑋  ∈  𝐿  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) ) )  →  ( 𝑥 (  ·𝑠  ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) )  =  ( 𝑥 (  ·𝑠  ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 34 | 29 33 | eqtrd | ⊢ ( ( ( ( 𝑇  ∈  LMod  ∧  𝑋  ∈  𝐿  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑆 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) ) )  →  ( 𝐹 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑆 ) 𝑦 ) )  =  ( 𝑥 (  ·𝑠  ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 35 | 3 4 5 6 7 8 10 14 19 25 34 | islmhmd | ⊢ ( ( ( 𝑇  ∈  LMod  ∧  𝑋  ∈  𝐿  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  →  𝐹  ∈  ( 𝑆  LMHom  𝑈 ) ) | 
						
							| 36 |  | simpr | ⊢ ( ( ( 𝑇  ∈  LMod  ∧  𝑋  ∈  𝐿  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑈 ) )  →  𝐹  ∈  ( 𝑆  LMHom  𝑈 ) ) | 
						
							| 37 |  | simpl1 | ⊢ ( ( ( 𝑇  ∈  LMod  ∧  𝑋  ∈  𝐿  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑈 ) )  →  𝑇  ∈  LMod ) | 
						
							| 38 |  | simpl2 | ⊢ ( ( ( 𝑇  ∈  LMod  ∧  𝑋  ∈  𝐿  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑈 ) )  →  𝑋  ∈  𝐿 ) | 
						
							| 39 | 1 2 | reslmhm2 | ⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑈 )  ∧  𝑇  ∈  LMod  ∧  𝑋  ∈  𝐿 )  →  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) ) | 
						
							| 40 | 36 37 38 39 | syl3anc | ⊢ ( ( ( 𝑇  ∈  LMod  ∧  𝑋  ∈  𝐿  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑈 ) )  →  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) ) | 
						
							| 41 | 35 40 | impbida | ⊢ ( ( 𝑇  ∈  LMod  ∧  𝑋  ∈  𝐿  ∧  ran  𝐹  ⊆  𝑋 )  →  ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ↔  𝐹  ∈  ( 𝑆  LMHom  𝑈 ) ) ) |