| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resmhm.u | ⊢ 𝑈  =  ( 𝑆  ↾s  𝑋 ) | 
						
							| 2 |  | mhmrcl2 | ⊢ ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  →  𝑇  ∈  Mnd ) | 
						
							| 3 | 1 | submmnd | ⊢ ( 𝑋  ∈  ( SubMnd ‘ 𝑆 )  →  𝑈  ∈  Mnd ) | 
						
							| 4 | 2 3 | anim12ci | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑆 ) )  →  ( 𝑈  ∈  Mnd  ∧  𝑇  ∈  Mnd ) ) | 
						
							| 5 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 6 |  | eqid | ⊢ ( Base ‘ 𝑇 )  =  ( Base ‘ 𝑇 ) | 
						
							| 7 | 5 6 | mhmf | ⊢ ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  →  𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) | 
						
							| 8 | 5 | submss | ⊢ ( 𝑋  ∈  ( SubMnd ‘ 𝑆 )  →  𝑋  ⊆  ( Base ‘ 𝑆 ) ) | 
						
							| 9 |  | fssres | ⊢ ( ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 )  ∧  𝑋  ⊆  ( Base ‘ 𝑆 ) )  →  ( 𝐹  ↾  𝑋 ) : 𝑋 ⟶ ( Base ‘ 𝑇 ) ) | 
						
							| 10 | 7 8 9 | syl2an | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑆 ) )  →  ( 𝐹  ↾  𝑋 ) : 𝑋 ⟶ ( Base ‘ 𝑇 ) ) | 
						
							| 11 | 8 | adantl | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑆 ) )  →  𝑋  ⊆  ( Base ‘ 𝑆 ) ) | 
						
							| 12 | 1 5 | ressbas2 | ⊢ ( 𝑋  ⊆  ( Base ‘ 𝑆 )  →  𝑋  =  ( Base ‘ 𝑈 ) ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑆 ) )  →  𝑋  =  ( Base ‘ 𝑈 ) ) | 
						
							| 14 | 13 | feq2d | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑆 ) )  →  ( ( 𝐹  ↾  𝑋 ) : 𝑋 ⟶ ( Base ‘ 𝑇 )  ↔  ( 𝐹  ↾  𝑋 ) : ( Base ‘ 𝑈 ) ⟶ ( Base ‘ 𝑇 ) ) ) | 
						
							| 15 | 10 14 | mpbid | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑆 ) )  →  ( 𝐹  ↾  𝑋 ) : ( Base ‘ 𝑈 ) ⟶ ( Base ‘ 𝑇 ) ) | 
						
							| 16 |  | simpll | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑆 ) )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  𝐹  ∈  ( 𝑆  MndHom  𝑇 ) ) | 
						
							| 17 | 8 | ad2antlr | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑆 ) )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  𝑋  ⊆  ( Base ‘ 𝑆 ) ) | 
						
							| 18 |  | simprl | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑆 ) )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  𝑥  ∈  𝑋 ) | 
						
							| 19 | 17 18 | sseldd | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑆 ) )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  𝑥  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 20 |  | simprr | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑆 ) )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  𝑦  ∈  𝑋 ) | 
						
							| 21 | 17 20 | sseldd | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑆 ) )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  𝑦  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 22 |  | eqid | ⊢ ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑆 ) | 
						
							| 23 |  | eqid | ⊢ ( +g ‘ 𝑇 )  =  ( +g ‘ 𝑇 ) | 
						
							| 24 | 5 22 23 | mhmlin | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 25 | 16 19 21 24 | syl3anc | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑆 ) )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 26 | 22 | submcl | ⊢ ( ( 𝑋  ∈  ( SubMnd ‘ 𝑆 )  ∧  𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 )  ∈  𝑋 ) | 
						
							| 27 | 26 | 3expb | ⊢ ( ( 𝑋  ∈  ( SubMnd ‘ 𝑆 )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 )  ∈  𝑋 ) | 
						
							| 28 | 27 | adantll | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑆 ) )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 )  ∈  𝑋 ) | 
						
							| 29 | 28 | fvresd | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑆 ) )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ( 𝐹  ↾  𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ) | 
						
							| 30 |  | fvres | ⊢ ( 𝑥  ∈  𝑋  →  ( ( 𝐹  ↾  𝑋 ) ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 31 |  | fvres | ⊢ ( 𝑦  ∈  𝑋  →  ( ( 𝐹  ↾  𝑋 ) ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 32 | 30 31 | oveqan12d | ⊢ ( ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( ( ( 𝐹  ↾  𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹  ↾  𝑋 ) ‘ 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 33 | 32 | adantl | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑆 ) )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ( ( 𝐹  ↾  𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹  ↾  𝑋 ) ‘ 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 34 | 25 29 33 | 3eqtr4d | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑆 ) )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ( 𝐹  ↾  𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( ( 𝐹  ↾  𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹  ↾  𝑋 ) ‘ 𝑦 ) ) ) | 
						
							| 35 | 34 | ralrimivva | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑆 ) )  →  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( 𝐹  ↾  𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( ( 𝐹  ↾  𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹  ↾  𝑋 ) ‘ 𝑦 ) ) ) | 
						
							| 36 | 1 22 | ressplusg | ⊢ ( 𝑋  ∈  ( SubMnd ‘ 𝑆 )  →  ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑈 ) ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑆 ) )  →  ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑈 ) ) | 
						
							| 38 | 37 | oveqd | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑆 ) )  →  ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) ) | 
						
							| 39 | 38 | fveqeq2d | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑆 ) )  →  ( ( ( 𝐹  ↾  𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( ( 𝐹  ↾  𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹  ↾  𝑋 ) ‘ 𝑦 ) )  ↔  ( ( 𝐹  ↾  𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) )  =  ( ( ( 𝐹  ↾  𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹  ↾  𝑋 ) ‘ 𝑦 ) ) ) ) | 
						
							| 40 | 13 39 | raleqbidv | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑆 ) )  →  ( ∀ 𝑦  ∈  𝑋 ( ( 𝐹  ↾  𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( ( 𝐹  ↾  𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹  ↾  𝑋 ) ‘ 𝑦 ) )  ↔  ∀ 𝑦  ∈  ( Base ‘ 𝑈 ) ( ( 𝐹  ↾  𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) )  =  ( ( ( 𝐹  ↾  𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹  ↾  𝑋 ) ‘ 𝑦 ) ) ) ) | 
						
							| 41 | 13 40 | raleqbidv | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑆 ) )  →  ( ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( 𝐹  ↾  𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( ( 𝐹  ↾  𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹  ↾  𝑋 ) ‘ 𝑦 ) )  ↔  ∀ 𝑥  ∈  ( Base ‘ 𝑈 ) ∀ 𝑦  ∈  ( Base ‘ 𝑈 ) ( ( 𝐹  ↾  𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) )  =  ( ( ( 𝐹  ↾  𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹  ↾  𝑋 ) ‘ 𝑦 ) ) ) ) | 
						
							| 42 | 35 41 | mpbid | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑆 ) )  →  ∀ 𝑥  ∈  ( Base ‘ 𝑈 ) ∀ 𝑦  ∈  ( Base ‘ 𝑈 ) ( ( 𝐹  ↾  𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) )  =  ( ( ( 𝐹  ↾  𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹  ↾  𝑋 ) ‘ 𝑦 ) ) ) | 
						
							| 43 |  | eqid | ⊢ ( 0g ‘ 𝑆 )  =  ( 0g ‘ 𝑆 ) | 
						
							| 44 | 43 | subm0cl | ⊢ ( 𝑋  ∈  ( SubMnd ‘ 𝑆 )  →  ( 0g ‘ 𝑆 )  ∈  𝑋 ) | 
						
							| 45 | 44 | adantl | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑆 ) )  →  ( 0g ‘ 𝑆 )  ∈  𝑋 ) | 
						
							| 46 | 45 | fvresd | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑆 ) )  →  ( ( 𝐹  ↾  𝑋 ) ‘ ( 0g ‘ 𝑆 ) )  =  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) | 
						
							| 47 | 1 43 | subm0 | ⊢ ( 𝑋  ∈  ( SubMnd ‘ 𝑆 )  →  ( 0g ‘ 𝑆 )  =  ( 0g ‘ 𝑈 ) ) | 
						
							| 48 | 47 | adantl | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑆 ) )  →  ( 0g ‘ 𝑆 )  =  ( 0g ‘ 𝑈 ) ) | 
						
							| 49 | 48 | fveq2d | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑆 ) )  →  ( ( 𝐹  ↾  𝑋 ) ‘ ( 0g ‘ 𝑆 ) )  =  ( ( 𝐹  ↾  𝑋 ) ‘ ( 0g ‘ 𝑈 ) ) ) | 
						
							| 50 |  | eqid | ⊢ ( 0g ‘ 𝑇 )  =  ( 0g ‘ 𝑇 ) | 
						
							| 51 | 43 50 | mhm0 | ⊢ ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  →  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 ) ) | 
						
							| 52 | 51 | adantr | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑆 ) )  →  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 ) ) | 
						
							| 53 | 46 49 52 | 3eqtr3d | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑆 ) )  →  ( ( 𝐹  ↾  𝑋 ) ‘ ( 0g ‘ 𝑈 ) )  =  ( 0g ‘ 𝑇 ) ) | 
						
							| 54 | 15 42 53 | 3jca | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑆 ) )  →  ( ( 𝐹  ↾  𝑋 ) : ( Base ‘ 𝑈 ) ⟶ ( Base ‘ 𝑇 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑈 ) ∀ 𝑦  ∈  ( Base ‘ 𝑈 ) ( ( 𝐹  ↾  𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) )  =  ( ( ( 𝐹  ↾  𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹  ↾  𝑋 ) ‘ 𝑦 ) )  ∧  ( ( 𝐹  ↾  𝑋 ) ‘ ( 0g ‘ 𝑈 ) )  =  ( 0g ‘ 𝑇 ) ) ) | 
						
							| 55 |  | eqid | ⊢ ( Base ‘ 𝑈 )  =  ( Base ‘ 𝑈 ) | 
						
							| 56 |  | eqid | ⊢ ( +g ‘ 𝑈 )  =  ( +g ‘ 𝑈 ) | 
						
							| 57 |  | eqid | ⊢ ( 0g ‘ 𝑈 )  =  ( 0g ‘ 𝑈 ) | 
						
							| 58 | 55 6 56 23 57 50 | ismhm | ⊢ ( ( 𝐹  ↾  𝑋 )  ∈  ( 𝑈  MndHom  𝑇 )  ↔  ( ( 𝑈  ∈  Mnd  ∧  𝑇  ∈  Mnd )  ∧  ( ( 𝐹  ↾  𝑋 ) : ( Base ‘ 𝑈 ) ⟶ ( Base ‘ 𝑇 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑈 ) ∀ 𝑦  ∈  ( Base ‘ 𝑈 ) ( ( 𝐹  ↾  𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) )  =  ( ( ( 𝐹  ↾  𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹  ↾  𝑋 ) ‘ 𝑦 ) )  ∧  ( ( 𝐹  ↾  𝑋 ) ‘ ( 0g ‘ 𝑈 ) )  =  ( 0g ‘ 𝑇 ) ) ) ) | 
						
							| 59 | 4 54 58 | sylanbrc | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑆 ) )  →  ( 𝐹  ↾  𝑋 )  ∈  ( 𝑈  MndHom  𝑇 ) ) |