| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resmhm2.u | ⊢ 𝑈  =  ( 𝑇  ↾s  𝑋 ) | 
						
							| 2 |  | mhmrcl1 | ⊢ ( 𝐹  ∈  ( 𝑆  MndHom  𝑈 )  →  𝑆  ∈  Mnd ) | 
						
							| 3 |  | submrcl | ⊢ ( 𝑋  ∈  ( SubMnd ‘ 𝑇 )  →  𝑇  ∈  Mnd ) | 
						
							| 4 | 2 3 | anim12i | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑈 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑇 ) )  →  ( 𝑆  ∈  Mnd  ∧  𝑇  ∈  Mnd ) ) | 
						
							| 5 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 6 |  | eqid | ⊢ ( Base ‘ 𝑈 )  =  ( Base ‘ 𝑈 ) | 
						
							| 7 | 5 6 | mhmf | ⊢ ( 𝐹  ∈  ( 𝑆  MndHom  𝑈 )  →  𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑈 ) ) | 
						
							| 8 | 1 | submbas | ⊢ ( 𝑋  ∈  ( SubMnd ‘ 𝑇 )  →  𝑋  =  ( Base ‘ 𝑈 ) ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ 𝑇 )  =  ( Base ‘ 𝑇 ) | 
						
							| 10 | 9 | submss | ⊢ ( 𝑋  ∈  ( SubMnd ‘ 𝑇 )  →  𝑋  ⊆  ( Base ‘ 𝑇 ) ) | 
						
							| 11 | 8 10 | eqsstrrd | ⊢ ( 𝑋  ∈  ( SubMnd ‘ 𝑇 )  →  ( Base ‘ 𝑈 )  ⊆  ( Base ‘ 𝑇 ) ) | 
						
							| 12 |  | fss | ⊢ ( ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑈 )  ∧  ( Base ‘ 𝑈 )  ⊆  ( Base ‘ 𝑇 ) )  →  𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) | 
						
							| 13 | 7 11 12 | syl2an | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑈 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑇 ) )  →  𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) | 
						
							| 14 |  | eqid | ⊢ ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑆 ) | 
						
							| 15 |  | eqid | ⊢ ( +g ‘ 𝑈 )  =  ( +g ‘ 𝑈 ) | 
						
							| 16 | 5 14 15 | mhmlin | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑈 )  ∧  𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 17 | 16 | 3expb | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑈 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) ) )  →  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 18 | 17 | adantlr | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑈 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) ) )  →  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 19 |  | eqid | ⊢ ( +g ‘ 𝑇 )  =  ( +g ‘ 𝑇 ) | 
						
							| 20 | 1 19 | ressplusg | ⊢ ( 𝑋  ∈  ( SubMnd ‘ 𝑇 )  →  ( +g ‘ 𝑇 )  =  ( +g ‘ 𝑈 ) ) | 
						
							| 21 | 20 | ad2antlr | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑈 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) ) )  →  ( +g ‘ 𝑇 )  =  ( +g ‘ 𝑈 ) ) | 
						
							| 22 | 21 | oveqd | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑈 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) ) )  →  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 23 | 18 22 | eqtr4d | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑈 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) ) )  →  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 24 | 23 | ralrimivva | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑈 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑇 ) )  →  ∀ 𝑥  ∈  ( Base ‘ 𝑆 ) ∀ 𝑦  ∈  ( Base ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 25 |  | eqid | ⊢ ( 0g ‘ 𝑆 )  =  ( 0g ‘ 𝑆 ) | 
						
							| 26 |  | eqid | ⊢ ( 0g ‘ 𝑈 )  =  ( 0g ‘ 𝑈 ) | 
						
							| 27 | 25 26 | mhm0 | ⊢ ( 𝐹  ∈  ( 𝑆  MndHom  𝑈 )  →  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑈 ) ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑈 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑇 ) )  →  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑈 ) ) | 
						
							| 29 |  | eqid | ⊢ ( 0g ‘ 𝑇 )  =  ( 0g ‘ 𝑇 ) | 
						
							| 30 | 1 29 | subm0 | ⊢ ( 𝑋  ∈  ( SubMnd ‘ 𝑇 )  →  ( 0g ‘ 𝑇 )  =  ( 0g ‘ 𝑈 ) ) | 
						
							| 31 | 30 | adantl | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑈 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑇 ) )  →  ( 0g ‘ 𝑇 )  =  ( 0g ‘ 𝑈 ) ) | 
						
							| 32 | 28 31 | eqtr4d | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑈 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑇 ) )  →  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 ) ) | 
						
							| 33 | 13 24 32 | 3jca | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑈 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑇 ) )  →  ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑆 ) ∀ 𝑦  ∈  ( Base ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 ) ) ) | 
						
							| 34 | 5 9 14 19 25 29 | ismhm | ⊢ ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ↔  ( ( 𝑆  ∈  Mnd  ∧  𝑇  ∈  Mnd )  ∧  ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑆 ) ∀ 𝑦  ∈  ( Base ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 ) ) ) ) | 
						
							| 35 | 4 33 34 | sylanbrc | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑈 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑇 ) )  →  𝐹  ∈  ( 𝑆  MndHom  𝑇 ) ) |