Step |
Hyp |
Ref |
Expression |
1 |
|
resmhm2.u |
⊢ 𝑈 = ( 𝑇 ↾s 𝑋 ) |
2 |
|
mhmrcl1 |
⊢ ( 𝐹 ∈ ( 𝑆 MndHom 𝑈 ) → 𝑆 ∈ Mnd ) |
3 |
|
submrcl |
⊢ ( 𝑋 ∈ ( SubMnd ‘ 𝑇 ) → 𝑇 ∈ Mnd ) |
4 |
2 3
|
anim12i |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑈 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑇 ) ) → ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ) ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
7 |
5 6
|
mhmf |
⊢ ( 𝐹 ∈ ( 𝑆 MndHom 𝑈 ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑈 ) ) |
8 |
1
|
submbas |
⊢ ( 𝑋 ∈ ( SubMnd ‘ 𝑇 ) → 𝑋 = ( Base ‘ 𝑈 ) ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
10 |
9
|
submss |
⊢ ( 𝑋 ∈ ( SubMnd ‘ 𝑇 ) → 𝑋 ⊆ ( Base ‘ 𝑇 ) ) |
11 |
8 10
|
eqsstrrd |
⊢ ( 𝑋 ∈ ( SubMnd ‘ 𝑇 ) → ( Base ‘ 𝑈 ) ⊆ ( Base ‘ 𝑇 ) ) |
12 |
|
fss |
⊢ ( ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑈 ) ∧ ( Base ‘ 𝑈 ) ⊆ ( Base ‘ 𝑇 ) ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
13 |
7 11 12
|
syl2an |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑈 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑇 ) ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
14 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
15 |
|
eqid |
⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) |
16 |
5 14 15
|
mhmlin |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑈 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) |
17 |
16
|
3expb |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑈 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) |
18 |
17
|
adantlr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑈 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) |
19 |
|
eqid |
⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) |
20 |
1 19
|
ressplusg |
⊢ ( 𝑋 ∈ ( SubMnd ‘ 𝑇 ) → ( +g ‘ 𝑇 ) = ( +g ‘ 𝑈 ) ) |
21 |
20
|
ad2antlr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑈 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( +g ‘ 𝑇 ) = ( +g ‘ 𝑈 ) ) |
22 |
21
|
oveqd |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑈 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) |
23 |
18 22
|
eqtr4d |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑈 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
24 |
23
|
ralrimivva |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑈 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑇 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
25 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
26 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
27 |
25 26
|
mhm0 |
⊢ ( 𝐹 ∈ ( 𝑆 MndHom 𝑈 ) → ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑈 ) ) |
28 |
27
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑈 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑇 ) ) → ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑈 ) ) |
29 |
|
eqid |
⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) |
30 |
1 29
|
subm0 |
⊢ ( 𝑋 ∈ ( SubMnd ‘ 𝑇 ) → ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑈 ) ) |
31 |
30
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑈 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑇 ) ) → ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑈 ) ) |
32 |
28 31
|
eqtr4d |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑈 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑇 ) ) → ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) |
33 |
13 24 32
|
3jca |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑈 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑇 ) ) → ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) |
34 |
5 9 14 19 25 29
|
ismhm |
⊢ ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ↔ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ) ∧ ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ) |
35 |
4 33 34
|
sylanbrc |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑈 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑇 ) ) → 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ) |