| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resmhm2.u | ⊢ 𝑈  =  ( 𝑇  ↾s  𝑋 ) | 
						
							| 2 |  | mhmrcl1 | ⊢ ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  →  𝑆  ∈  Mnd ) | 
						
							| 3 | 2 | adantl | ⊢ ( ( ( 𝑋  ∈  ( SubMnd ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  MndHom  𝑇 ) )  →  𝑆  ∈  Mnd ) | 
						
							| 4 | 1 | submmnd | ⊢ ( 𝑋  ∈  ( SubMnd ‘ 𝑇 )  →  𝑈  ∈  Mnd ) | 
						
							| 5 | 4 | ad2antrr | ⊢ ( ( ( 𝑋  ∈  ( SubMnd ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  MndHom  𝑇 ) )  →  𝑈  ∈  Mnd ) | 
						
							| 6 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ 𝑇 )  =  ( Base ‘ 𝑇 ) | 
						
							| 8 | 6 7 | mhmf | ⊢ ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  →  𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( ( 𝑋  ∈  ( SubMnd ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  MndHom  𝑇 ) )  →  𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) | 
						
							| 10 | 9 | ffnd | ⊢ ( ( ( 𝑋  ∈  ( SubMnd ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  MndHom  𝑇 ) )  →  𝐹  Fn  ( Base ‘ 𝑆 ) ) | 
						
							| 11 |  | simplr | ⊢ ( ( ( 𝑋  ∈  ( SubMnd ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  MndHom  𝑇 ) )  →  ran  𝐹  ⊆  𝑋 ) | 
						
							| 12 |  | df-f | ⊢ ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ 𝑋  ↔  ( 𝐹  Fn  ( Base ‘ 𝑆 )  ∧  ran  𝐹  ⊆  𝑋 ) ) | 
						
							| 13 | 10 11 12 | sylanbrc | ⊢ ( ( ( 𝑋  ∈  ( SubMnd ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  MndHom  𝑇 ) )  →  𝐹 : ( Base ‘ 𝑆 ) ⟶ 𝑋 ) | 
						
							| 14 | 1 | submbas | ⊢ ( 𝑋  ∈  ( SubMnd ‘ 𝑇 )  →  𝑋  =  ( Base ‘ 𝑈 ) ) | 
						
							| 15 | 14 | ad2antrr | ⊢ ( ( ( 𝑋  ∈  ( SubMnd ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  MndHom  𝑇 ) )  →  𝑋  =  ( Base ‘ 𝑈 ) ) | 
						
							| 16 | 15 | feq3d | ⊢ ( ( ( 𝑋  ∈  ( SubMnd ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  MndHom  𝑇 ) )  →  ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ 𝑋  ↔  𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑈 ) ) ) | 
						
							| 17 | 13 16 | mpbid | ⊢ ( ( ( 𝑋  ∈  ( SubMnd ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  MndHom  𝑇 ) )  →  𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑈 ) ) | 
						
							| 18 |  | eqid | ⊢ ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑆 ) | 
						
							| 19 |  | eqid | ⊢ ( +g ‘ 𝑇 )  =  ( +g ‘ 𝑇 ) | 
						
							| 20 | 6 18 19 | mhmlin | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 21 | 20 | 3expb | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) ) )  →  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 22 | 21 | adantll | ⊢ ( ( ( ( 𝑋  ∈  ( SubMnd ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  MndHom  𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) ) )  →  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 23 | 1 19 | ressplusg | ⊢ ( 𝑋  ∈  ( SubMnd ‘ 𝑇 )  →  ( +g ‘ 𝑇 )  =  ( +g ‘ 𝑈 ) ) | 
						
							| 24 | 23 | ad3antrrr | ⊢ ( ( ( ( 𝑋  ∈  ( SubMnd ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  MndHom  𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) ) )  →  ( +g ‘ 𝑇 )  =  ( +g ‘ 𝑈 ) ) | 
						
							| 25 | 24 | oveqd | ⊢ ( ( ( ( 𝑋  ∈  ( SubMnd ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  MndHom  𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) ) )  →  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 26 | 22 25 | eqtrd | ⊢ ( ( ( ( 𝑋  ∈  ( SubMnd ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  MndHom  𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) ) )  →  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 27 | 26 | ralrimivva | ⊢ ( ( ( 𝑋  ∈  ( SubMnd ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  MndHom  𝑇 ) )  →  ∀ 𝑥  ∈  ( Base ‘ 𝑆 ) ∀ 𝑦  ∈  ( Base ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 28 |  | eqid | ⊢ ( 0g ‘ 𝑆 )  =  ( 0g ‘ 𝑆 ) | 
						
							| 29 |  | eqid | ⊢ ( 0g ‘ 𝑇 )  =  ( 0g ‘ 𝑇 ) | 
						
							| 30 | 28 29 | mhm0 | ⊢ ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  →  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 ) ) | 
						
							| 31 | 30 | adantl | ⊢ ( ( ( 𝑋  ∈  ( SubMnd ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  MndHom  𝑇 ) )  →  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 ) ) | 
						
							| 32 | 1 29 | subm0 | ⊢ ( 𝑋  ∈  ( SubMnd ‘ 𝑇 )  →  ( 0g ‘ 𝑇 )  =  ( 0g ‘ 𝑈 ) ) | 
						
							| 33 | 32 | ad2antrr | ⊢ ( ( ( 𝑋  ∈  ( SubMnd ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  MndHom  𝑇 ) )  →  ( 0g ‘ 𝑇 )  =  ( 0g ‘ 𝑈 ) ) | 
						
							| 34 | 31 33 | eqtrd | ⊢ ( ( ( 𝑋  ∈  ( SubMnd ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  MndHom  𝑇 ) )  →  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑈 ) ) | 
						
							| 35 | 17 27 34 | 3jca | ⊢ ( ( ( 𝑋  ∈  ( SubMnd ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  MndHom  𝑇 ) )  →  ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑈 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑆 ) ∀ 𝑦  ∈  ( Base ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑈 ) ) ) | 
						
							| 36 |  | eqid | ⊢ ( Base ‘ 𝑈 )  =  ( Base ‘ 𝑈 ) | 
						
							| 37 |  | eqid | ⊢ ( +g ‘ 𝑈 )  =  ( +g ‘ 𝑈 ) | 
						
							| 38 |  | eqid | ⊢ ( 0g ‘ 𝑈 )  =  ( 0g ‘ 𝑈 ) | 
						
							| 39 | 6 36 18 37 28 38 | ismhm | ⊢ ( 𝐹  ∈  ( 𝑆  MndHom  𝑈 )  ↔  ( ( 𝑆  ∈  Mnd  ∧  𝑈  ∈  Mnd )  ∧  ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑈 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑆 ) ∀ 𝑦  ∈  ( Base ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑈 ) ) ) ) | 
						
							| 40 | 3 5 35 39 | syl21anbrc | ⊢ ( ( ( 𝑋  ∈  ( SubMnd ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  MndHom  𝑇 ) )  →  𝐹  ∈  ( 𝑆  MndHom  𝑈 ) ) | 
						
							| 41 | 1 | resmhm2 | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑈 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑇 ) )  →  𝐹  ∈  ( 𝑆  MndHom  𝑇 ) ) | 
						
							| 42 | 41 | ancoms | ⊢ ( ( 𝑋  ∈  ( SubMnd ‘ 𝑇 )  ∧  𝐹  ∈  ( 𝑆  MndHom  𝑈 ) )  →  𝐹  ∈  ( 𝑆  MndHom  𝑇 ) ) | 
						
							| 43 | 42 | adantlr | ⊢ ( ( ( 𝑋  ∈  ( SubMnd ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  MndHom  𝑈 ) )  →  𝐹  ∈  ( 𝑆  MndHom  𝑇 ) ) | 
						
							| 44 | 40 43 | impbida | ⊢ ( ( 𝑋  ∈  ( SubMnd ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  →  ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ↔  𝐹  ∈  ( 𝑆  MndHom  𝑈 ) ) ) |