| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mndissubm.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | mndissubm.s | ⊢ 𝑆  =  ( Base ‘ 𝐻 ) | 
						
							| 3 |  | mndissubm.z | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 4 | 1 2 3 | mndissubm | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝐻  ∈  Mnd )  →  ( ( 𝑆  ⊆  𝐵  ∧   0   ∈  𝑆  ∧  ( +g ‘ 𝐻 )  =  ( ( +g ‘ 𝐺 )  ↾  ( 𝑆  ×  𝑆 ) ) )  →  𝑆  ∈  ( SubMnd ‘ 𝐺 ) ) ) | 
						
							| 5 | 4 | imp | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐻  ∈  Mnd )  ∧  ( 𝑆  ⊆  𝐵  ∧   0   ∈  𝑆  ∧  ( +g ‘ 𝐻 )  =  ( ( +g ‘ 𝐺 )  ↾  ( 𝑆  ×  𝑆 ) ) ) )  →  𝑆  ∈  ( SubMnd ‘ 𝐺 ) ) | 
						
							| 6 |  | simpl | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝐻  ∈  Mnd )  →  𝐺  ∈  Mnd ) | 
						
							| 7 |  | 3simpa | ⊢ ( ( 𝑆  ⊆  𝐵  ∧   0   ∈  𝑆  ∧  ( +g ‘ 𝐻 )  =  ( ( +g ‘ 𝐺 )  ↾  ( 𝑆  ×  𝑆 ) ) )  →  ( 𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 ) ) | 
						
							| 8 | 6 7 | anim12i | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐻  ∈  Mnd )  ∧  ( 𝑆  ⊆  𝐵  ∧   0   ∈  𝑆  ∧  ( +g ‘ 𝐻 )  =  ( ( +g ‘ 𝐺 )  ↾  ( 𝑆  ×  𝑆 ) ) ) )  →  ( 𝐺  ∈  Mnd  ∧  ( 𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 ) ) ) | 
						
							| 9 | 8 | biantrud | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐻  ∈  Mnd )  ∧  ( 𝑆  ⊆  𝐵  ∧   0   ∈  𝑆  ∧  ( +g ‘ 𝐻 )  =  ( ( +g ‘ 𝐺 )  ↾  ( 𝑆  ×  𝑆 ) ) ) )  →  ( ( 𝐺  ↾s  𝑆 )  ∈  Mnd  ↔  ( ( 𝐺  ↾s  𝑆 )  ∈  Mnd  ∧  ( 𝐺  ∈  Mnd  ∧  ( 𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 ) ) ) ) ) | 
						
							| 10 |  | an21 | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  ( 𝐺  ↾s  𝑆 )  ∈  Mnd )  ∧  ( 𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 ) )  ↔  ( ( 𝐺  ↾s  𝑆 )  ∈  Mnd  ∧  ( 𝐺  ∈  Mnd  ∧  ( 𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 ) ) ) ) | 
						
							| 11 | 9 10 | bitr4di | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐻  ∈  Mnd )  ∧  ( 𝑆  ⊆  𝐵  ∧   0   ∈  𝑆  ∧  ( +g ‘ 𝐻 )  =  ( ( +g ‘ 𝐺 )  ↾  ( 𝑆  ×  𝑆 ) ) ) )  →  ( ( 𝐺  ↾s  𝑆 )  ∈  Mnd  ↔  ( ( 𝐺  ∈  Mnd  ∧  ( 𝐺  ↾s  𝑆 )  ∈  Mnd )  ∧  ( 𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 ) ) ) ) | 
						
							| 12 | 1 3 | issubmndb | ⊢ ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ↔  ( ( 𝐺  ∈  Mnd  ∧  ( 𝐺  ↾s  𝑆 )  ∈  Mnd )  ∧  ( 𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 ) ) ) | 
						
							| 13 | 11 12 | bitr4di | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐻  ∈  Mnd )  ∧  ( 𝑆  ⊆  𝐵  ∧   0   ∈  𝑆  ∧  ( +g ‘ 𝐻 )  =  ( ( +g ‘ 𝐺 )  ↾  ( 𝑆  ×  𝑆 ) ) ) )  →  ( ( 𝐺  ↾s  𝑆 )  ∈  Mnd  ↔  𝑆  ∈  ( SubMnd ‘ 𝐺 ) ) ) | 
						
							| 14 | 5 13 | mpbird | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐻  ∈  Mnd )  ∧  ( 𝑆  ⊆  𝐵  ∧   0   ∈  𝑆  ∧  ( +g ‘ 𝐻 )  =  ( ( +g ‘ 𝐺 )  ↾  ( 𝑆  ×  𝑆 ) ) ) )  →  ( 𝐺  ↾s  𝑆 )  ∈  Mnd ) | 
						
							| 15 | 14 | ex | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝐻  ∈  Mnd )  →  ( ( 𝑆  ⊆  𝐵  ∧   0   ∈  𝑆  ∧  ( +g ‘ 𝐻 )  =  ( ( +g ‘ 𝐺 )  ↾  ( 𝑆  ×  𝑆 ) ) )  →  ( 𝐺  ↾s  𝑆 )  ∈  Mnd ) ) |