Metamath Proof Explorer


Theorem resmpo

Description: Restriction of the mapping operation. (Contributed by Mario Carneiro, 17-Dec-2013)

Ref Expression
Assertion resmpo ( ( 𝐶𝐴𝐷𝐵 ) → ( ( 𝑥𝐴 , 𝑦𝐵𝐸 ) ↾ ( 𝐶 × 𝐷 ) ) = ( 𝑥𝐶 , 𝑦𝐷𝐸 ) )

Proof

Step Hyp Ref Expression
1 resoprab2 ( ( 𝐶𝐴𝐷𝐵 ) → ( { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧 = 𝐸 ) } ↾ ( 𝐶 × 𝐷 ) ) = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥𝐶𝑦𝐷 ) ∧ 𝑧 = 𝐸 ) } )
2 df-mpo ( 𝑥𝐴 , 𝑦𝐵𝐸 ) = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧 = 𝐸 ) }
3 2 reseq1i ( ( 𝑥𝐴 , 𝑦𝐵𝐸 ) ↾ ( 𝐶 × 𝐷 ) ) = ( { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧 = 𝐸 ) } ↾ ( 𝐶 × 𝐷 ) )
4 df-mpo ( 𝑥𝐶 , 𝑦𝐷𝐸 ) = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥𝐶𝑦𝐷 ) ∧ 𝑧 = 𝐸 ) }
5 1 3 4 3eqtr4g ( ( 𝐶𝐴𝐷𝐵 ) → ( ( 𝑥𝐴 , 𝑦𝐵𝐸 ) ↾ ( 𝐶 × 𝐷 ) ) = ( 𝑥𝐶 , 𝑦𝐷𝐸 ) )