Metamath Proof Explorer


Theorem resmpt

Description: Restriction of the mapping operation. (Contributed by Mario Carneiro, 15-Jul-2013)

Ref Expression
Assertion resmpt ( 𝐵𝐴 → ( ( 𝑥𝐴𝐶 ) ↾ 𝐵 ) = ( 𝑥𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 resopab2 ( 𝐵𝐴 → ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 = 𝐶 ) } ↾ 𝐵 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐵𝑦 = 𝐶 ) } )
2 df-mpt ( 𝑥𝐴𝐶 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 = 𝐶 ) }
3 2 reseq1i ( ( 𝑥𝐴𝐶 ) ↾ 𝐵 ) = ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 = 𝐶 ) } ↾ 𝐵 )
4 df-mpt ( 𝑥𝐵𝐶 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐵𝑦 = 𝐶 ) }
5 1 3 4 3eqtr4g ( 𝐵𝐴 → ( ( 𝑥𝐴𝐶 ) ↾ 𝐵 ) = ( 𝑥𝐵𝐶 ) )