| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resres |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ 𝐴 ) ↾ 𝐵 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ ( 𝐴 ∩ 𝐵 ) ) |
| 2 |
|
ssid |
⊢ 𝐴 ⊆ 𝐴 |
| 3 |
|
resmpt |
⊢ ( 𝐴 ⊆ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ 𝐴 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) |
| 4 |
2 3
|
ax-mp |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ 𝐴 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
| 5 |
4
|
reseq1i |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ 𝐴 ) ↾ 𝐵 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ 𝐵 ) |
| 6 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 |
| 7 |
|
resmpt |
⊢ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↦ 𝐶 ) ) |
| 8 |
6 7
|
ax-mp |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↦ 𝐶 ) |
| 9 |
1 5 8
|
3eqtr3i |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ 𝐵 ) = ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↦ 𝐶 ) |