Metamath Proof Explorer


Theorem resmpt3

Description: Unconditional restriction of the mapping operation. (Contributed by Stefan O'Rear, 24-Jan-2015) (Proof shortened by Mario Carneiro, 22-Mar-2015)

Ref Expression
Assertion resmpt3 ( ( 𝑥𝐴𝐶 ) ↾ 𝐵 ) = ( 𝑥 ∈ ( 𝐴𝐵 ) ↦ 𝐶 )

Proof

Step Hyp Ref Expression
1 resres ( ( ( 𝑥𝐴𝐶 ) ↾ 𝐴 ) ↾ 𝐵 ) = ( ( 𝑥𝐴𝐶 ) ↾ ( 𝐴𝐵 ) )
2 ssid 𝐴𝐴
3 resmpt ( 𝐴𝐴 → ( ( 𝑥𝐴𝐶 ) ↾ 𝐴 ) = ( 𝑥𝐴𝐶 ) )
4 2 3 ax-mp ( ( 𝑥𝐴𝐶 ) ↾ 𝐴 ) = ( 𝑥𝐴𝐶 )
5 4 reseq1i ( ( ( 𝑥𝐴𝐶 ) ↾ 𝐴 ) ↾ 𝐵 ) = ( ( 𝑥𝐴𝐶 ) ↾ 𝐵 )
6 inss1 ( 𝐴𝐵 ) ⊆ 𝐴
7 resmpt ( ( 𝐴𝐵 ) ⊆ 𝐴 → ( ( 𝑥𝐴𝐶 ) ↾ ( 𝐴𝐵 ) ) = ( 𝑥 ∈ ( 𝐴𝐵 ) ↦ 𝐶 ) )
8 6 7 ax-mp ( ( 𝑥𝐴𝐶 ) ↾ ( 𝐴𝐵 ) ) = ( 𝑥 ∈ ( 𝐴𝐵 ) ↦ 𝐶 )
9 1 5 8 3eqtr3i ( ( 𝑥𝐴𝐶 ) ↾ 𝐵 ) = ( 𝑥 ∈ ( 𝐴𝐵 ) ↦ 𝐶 )