Metamath Proof Explorer


Theorem resmptf

Description: Restriction of the mapping operation. (Contributed by Thierry Arnoux, 28-Mar-2017)

Ref Expression
Hypotheses resmptf.a 𝑥 𝐴
resmptf.b 𝑥 𝐵
Assertion resmptf ( 𝐵𝐴 → ( ( 𝑥𝐴𝐶 ) ↾ 𝐵 ) = ( 𝑥𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 resmptf.a 𝑥 𝐴
2 resmptf.b 𝑥 𝐵
3 resmpt ( 𝐵𝐴 → ( ( 𝑦𝐴 𝑦 / 𝑥 𝐶 ) ↾ 𝐵 ) = ( 𝑦𝐵 𝑦 / 𝑥 𝐶 ) )
4 nfcv 𝑦 𝐴
5 nfcv 𝑦 𝐶
6 nfcsb1v 𝑥 𝑦 / 𝑥 𝐶
7 csbeq1a ( 𝑥 = 𝑦𝐶 = 𝑦 / 𝑥 𝐶 )
8 1 4 5 6 7 cbvmptf ( 𝑥𝐴𝐶 ) = ( 𝑦𝐴 𝑦 / 𝑥 𝐶 )
9 8 reseq1i ( ( 𝑥𝐴𝐶 ) ↾ 𝐵 ) = ( ( 𝑦𝐴 𝑦 / 𝑥 𝐶 ) ↾ 𝐵 )
10 nfcv 𝑦 𝐵
11 2 10 5 6 7 cbvmptf ( 𝑥𝐵𝐶 ) = ( 𝑦𝐵 𝑦 / 𝑥 𝐶 )
12 3 9 11 3eqtr4g ( 𝐵𝐴 → ( ( 𝑥𝐴𝐶 ) ↾ 𝐵 ) = ( 𝑥𝐵𝐶 ) )