Step |
Hyp |
Ref |
Expression |
1 |
|
resmptf.a |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
resmptf.b |
⊢ Ⅎ 𝑥 𝐵 |
3 |
|
resmpt |
⊢ ( 𝐵 ⊆ 𝐴 → ( ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ↾ 𝐵 ) = ( 𝑦 ∈ 𝐵 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) |
4 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐴 |
5 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐶 |
6 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐶 |
7 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐶 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
8 |
1 4 5 6 7
|
cbvmptf |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
9 |
8
|
reseq1i |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ 𝐵 ) = ( ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ↾ 𝐵 ) |
10 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐵 |
11 |
2 10 5 6 7
|
cbvmptf |
⊢ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑦 ∈ 𝐵 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
12 |
3 9 11
|
3eqtr4g |
⊢ ( 𝐵 ⊆ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ 𝐵 ) = ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ) |