Metamath Proof Explorer


Theorem resopab2

Description: Restriction of a class abstraction of ordered pairs. (Contributed by NM, 24-Aug-2007)

Ref Expression
Assertion resopab2 ( 𝐴𝐵 → ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐵𝜑 ) } ↾ 𝐴 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝜑 ) } )

Proof

Step Hyp Ref Expression
1 resopab ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐵𝜑 ) } ↾ 𝐴 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴 ∧ ( 𝑥𝐵𝜑 ) ) }
2 ssel ( 𝐴𝐵 → ( 𝑥𝐴𝑥𝐵 ) )
3 2 pm4.71d ( 𝐴𝐵 → ( 𝑥𝐴 ↔ ( 𝑥𝐴𝑥𝐵 ) ) )
4 3 anbi1d ( 𝐴𝐵 → ( ( 𝑥𝐴𝜑 ) ↔ ( ( 𝑥𝐴𝑥𝐵 ) ∧ 𝜑 ) ) )
5 anass ( ( ( 𝑥𝐴𝑥𝐵 ) ∧ 𝜑 ) ↔ ( 𝑥𝐴 ∧ ( 𝑥𝐵𝜑 ) ) )
6 4 5 bitr2di ( 𝐴𝐵 → ( ( 𝑥𝐴 ∧ ( 𝑥𝐵𝜑 ) ) ↔ ( 𝑥𝐴𝜑 ) ) )
7 6 opabbidv ( 𝐴𝐵 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴 ∧ ( 𝑥𝐵𝜑 ) ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝜑 ) } )
8 1 7 eqtrid ( 𝐴𝐵 → ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐵𝜑 ) } ↾ 𝐴 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝜑 ) } )