| Step | Hyp | Ref | Expression | 
						
							| 1 |  | funfn | ⊢ ( Fun  𝐹  ↔  𝐹  Fn  dom  𝐹 ) | 
						
							| 2 |  | elin | ⊢ ( 𝑥  ∈  ( 𝐵  ∩  dom  𝐹 )  ↔  ( 𝑥  ∈  𝐵  ∧  𝑥  ∈  dom  𝐹 ) ) | 
						
							| 3 | 2 | biancomi | ⊢ ( 𝑥  ∈  ( 𝐵  ∩  dom  𝐹 )  ↔  ( 𝑥  ∈  dom  𝐹  ∧  𝑥  ∈  𝐵 ) ) | 
						
							| 4 | 3 | anbi1i | ⊢ ( ( 𝑥  ∈  ( 𝐵  ∩  dom  𝐹 )  ∧  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑥 )  ∈  𝐴 )  ↔  ( ( 𝑥  ∈  dom  𝐹  ∧  𝑥  ∈  𝐵 )  ∧  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑥 )  ∈  𝐴 ) ) | 
						
							| 5 |  | fvres | ⊢ ( 𝑥  ∈  𝐵  →  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 6 | 5 | eleq1d | ⊢ ( 𝑥  ∈  𝐵  →  ( ( ( 𝐹  ↾  𝐵 ) ‘ 𝑥 )  ∈  𝐴  ↔  ( 𝐹 ‘ 𝑥 )  ∈  𝐴 ) ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝑥  ∈  dom  𝐹  ∧  𝑥  ∈  𝐵 )  →  ( ( ( 𝐹  ↾  𝐵 ) ‘ 𝑥 )  ∈  𝐴  ↔  ( 𝐹 ‘ 𝑥 )  ∈  𝐴 ) ) | 
						
							| 8 | 7 | pm5.32i | ⊢ ( ( ( 𝑥  ∈  dom  𝐹  ∧  𝑥  ∈  𝐵 )  ∧  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑥 )  ∈  𝐴 )  ↔  ( ( 𝑥  ∈  dom  𝐹  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝐹 ‘ 𝑥 )  ∈  𝐴 ) ) | 
						
							| 9 | 4 8 | bitri | ⊢ ( ( 𝑥  ∈  ( 𝐵  ∩  dom  𝐹 )  ∧  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑥 )  ∈  𝐴 )  ↔  ( ( 𝑥  ∈  dom  𝐹  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝐹 ‘ 𝑥 )  ∈  𝐴 ) ) | 
						
							| 10 | 9 | a1i | ⊢ ( 𝐹  Fn  dom  𝐹  →  ( ( 𝑥  ∈  ( 𝐵  ∩  dom  𝐹 )  ∧  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑥 )  ∈  𝐴 )  ↔  ( ( 𝑥  ∈  dom  𝐹  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝐹 ‘ 𝑥 )  ∈  𝐴 ) ) ) | 
						
							| 11 |  | an32 | ⊢ ( ( ( 𝑥  ∈  dom  𝐹  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝐹 ‘ 𝑥 )  ∈  𝐴 )  ↔  ( ( 𝑥  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑥 )  ∈  𝐴 )  ∧  𝑥  ∈  𝐵 ) ) | 
						
							| 12 | 10 11 | bitrdi | ⊢ ( 𝐹  Fn  dom  𝐹  →  ( ( 𝑥  ∈  ( 𝐵  ∩  dom  𝐹 )  ∧  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑥 )  ∈  𝐴 )  ↔  ( ( 𝑥  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑥 )  ∈  𝐴 )  ∧  𝑥  ∈  𝐵 ) ) ) | 
						
							| 13 |  | fnfun | ⊢ ( 𝐹  Fn  dom  𝐹  →  Fun  𝐹 ) | 
						
							| 14 | 13 | funresd | ⊢ ( 𝐹  Fn  dom  𝐹  →  Fun  ( 𝐹  ↾  𝐵 ) ) | 
						
							| 15 |  | dmres | ⊢ dom  ( 𝐹  ↾  𝐵 )  =  ( 𝐵  ∩  dom  𝐹 ) | 
						
							| 16 |  | df-fn | ⊢ ( ( 𝐹  ↾  𝐵 )  Fn  ( 𝐵  ∩  dom  𝐹 )  ↔  ( Fun  ( 𝐹  ↾  𝐵 )  ∧  dom  ( 𝐹  ↾  𝐵 )  =  ( 𝐵  ∩  dom  𝐹 ) ) ) | 
						
							| 17 | 14 15 16 | sylanblrc | ⊢ ( 𝐹  Fn  dom  𝐹  →  ( 𝐹  ↾  𝐵 )  Fn  ( 𝐵  ∩  dom  𝐹 ) ) | 
						
							| 18 |  | elpreima | ⊢ ( ( 𝐹  ↾  𝐵 )  Fn  ( 𝐵  ∩  dom  𝐹 )  →  ( 𝑥  ∈  ( ◡ ( 𝐹  ↾  𝐵 )  “  𝐴 )  ↔  ( 𝑥  ∈  ( 𝐵  ∩  dom  𝐹 )  ∧  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑥 )  ∈  𝐴 ) ) ) | 
						
							| 19 | 17 18 | syl | ⊢ ( 𝐹  Fn  dom  𝐹  →  ( 𝑥  ∈  ( ◡ ( 𝐹  ↾  𝐵 )  “  𝐴 )  ↔  ( 𝑥  ∈  ( 𝐵  ∩  dom  𝐹 )  ∧  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑥 )  ∈  𝐴 ) ) ) | 
						
							| 20 |  | elin | ⊢ ( 𝑥  ∈  ( ( ◡ 𝐹  “  𝐴 )  ∩  𝐵 )  ↔  ( 𝑥  ∈  ( ◡ 𝐹  “  𝐴 )  ∧  𝑥  ∈  𝐵 ) ) | 
						
							| 21 |  | elpreima | ⊢ ( 𝐹  Fn  dom  𝐹  →  ( 𝑥  ∈  ( ◡ 𝐹  “  𝐴 )  ↔  ( 𝑥  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑥 )  ∈  𝐴 ) ) ) | 
						
							| 22 | 21 | anbi1d | ⊢ ( 𝐹  Fn  dom  𝐹  →  ( ( 𝑥  ∈  ( ◡ 𝐹  “  𝐴 )  ∧  𝑥  ∈  𝐵 )  ↔  ( ( 𝑥  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑥 )  ∈  𝐴 )  ∧  𝑥  ∈  𝐵 ) ) ) | 
						
							| 23 | 20 22 | bitrid | ⊢ ( 𝐹  Fn  dom  𝐹  →  ( 𝑥  ∈  ( ( ◡ 𝐹  “  𝐴 )  ∩  𝐵 )  ↔  ( ( 𝑥  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑥 )  ∈  𝐴 )  ∧  𝑥  ∈  𝐵 ) ) ) | 
						
							| 24 | 12 19 23 | 3bitr4d | ⊢ ( 𝐹  Fn  dom  𝐹  →  ( 𝑥  ∈  ( ◡ ( 𝐹  ↾  𝐵 )  “  𝐴 )  ↔  𝑥  ∈  ( ( ◡ 𝐹  “  𝐴 )  ∩  𝐵 ) ) ) | 
						
							| 25 | 1 24 | sylbi | ⊢ ( Fun  𝐹  →  ( 𝑥  ∈  ( ◡ ( 𝐹  ↾  𝐵 )  “  𝐴 )  ↔  𝑥  ∈  ( ( ◡ 𝐹  “  𝐴 )  ∩  𝐵 ) ) ) | 
						
							| 26 | 25 | eqrdv | ⊢ ( Fun  𝐹  →  ( ◡ ( 𝐹  ↾  𝐵 )  “  𝐴 )  =  ( ( ◡ 𝐹  “  𝐴 )  ∩  𝐵 ) ) |