Metamath Proof Explorer


Theorem resqcl

Description: Closure of the square of a real number. (Contributed by NM, 18-Oct-1999)

Ref Expression
Assertion resqcl ( 𝐴 ∈ ℝ → ( 𝐴 ↑ 2 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 2nn0 2 ∈ ℕ0
2 reexpcl ( ( 𝐴 ∈ ℝ ∧ 2 ∈ ℕ0 ) → ( 𝐴 ↑ 2 ) ∈ ℝ )
3 1 2 mpan2 ( 𝐴 ∈ ℝ → ( 𝐴 ↑ 2 ) ∈ ℝ )