Step |
Hyp |
Ref |
Expression |
1 |
|
resqrex |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) |
2 |
|
recn |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) |
3 |
2
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) → 𝑥 ∈ ℂ ) |
4 |
|
simprr |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) → ( 𝑥 ↑ 2 ) = 𝐴 ) |
5 |
|
rere |
⊢ ( 𝑥 ∈ ℝ → ( ℜ ‘ 𝑥 ) = 𝑥 ) |
6 |
5
|
breq2d |
⊢ ( 𝑥 ∈ ℝ → ( 0 ≤ ( ℜ ‘ 𝑥 ) ↔ 0 ≤ 𝑥 ) ) |
7 |
6
|
biimpar |
⊢ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) → 0 ≤ ( ℜ ‘ 𝑥 ) ) |
8 |
7
|
adantrr |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) → 0 ≤ ( ℜ ‘ 𝑥 ) ) |
9 |
|
rennim |
⊢ ( 𝑥 ∈ ℝ → ( i · 𝑥 ) ∉ ℝ+ ) |
10 |
9
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) → ( i · 𝑥 ) ∉ ℝ+ ) |
11 |
4 8 10
|
3jca |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) → ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) |
12 |
3 11
|
jca |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) → ( 𝑥 ∈ ℂ ∧ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ) |
13 |
12
|
reximi2 |
⊢ ( ∃ 𝑥 ∈ ℝ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) → ∃ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) |
14 |
1 13
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ∃ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) |
15 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
16 |
15
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ ℂ ) |
17 |
|
sqrmo |
⊢ ( 𝐴 ∈ ℂ → ∃* 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) |
18 |
16 17
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ∃* 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) |
19 |
|
reu5 |
⊢ ( ∃! 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ↔ ( ∃ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ∧ ∃* 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ) |
20 |
14 18 19
|
sylanbrc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ∃! 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) |