| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resqrex | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ∃ 𝑥  ∈  ℝ ( 0  ≤  𝑥  ∧  ( 𝑥 ↑ 2 )  =  𝐴 ) ) | 
						
							| 2 |  | recn | ⊢ ( 𝑥  ∈  ℝ  →  𝑥  ∈  ℂ ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝑥  ∈  ℝ  ∧  ( 0  ≤  𝑥  ∧  ( 𝑥 ↑ 2 )  =  𝐴 ) )  →  𝑥  ∈  ℂ ) | 
						
							| 4 |  | simprr | ⊢ ( ( 𝑥  ∈  ℝ  ∧  ( 0  ≤  𝑥  ∧  ( 𝑥 ↑ 2 )  =  𝐴 ) )  →  ( 𝑥 ↑ 2 )  =  𝐴 ) | 
						
							| 5 |  | rere | ⊢ ( 𝑥  ∈  ℝ  →  ( ℜ ‘ 𝑥 )  =  𝑥 ) | 
						
							| 6 | 5 | breq2d | ⊢ ( 𝑥  ∈  ℝ  →  ( 0  ≤  ( ℜ ‘ 𝑥 )  ↔  0  ≤  𝑥 ) ) | 
						
							| 7 | 6 | biimpar | ⊢ ( ( 𝑥  ∈  ℝ  ∧  0  ≤  𝑥 )  →  0  ≤  ( ℜ ‘ 𝑥 ) ) | 
						
							| 8 | 7 | adantrr | ⊢ ( ( 𝑥  ∈  ℝ  ∧  ( 0  ≤  𝑥  ∧  ( 𝑥 ↑ 2 )  =  𝐴 ) )  →  0  ≤  ( ℜ ‘ 𝑥 ) ) | 
						
							| 9 |  | rennim | ⊢ ( 𝑥  ∈  ℝ  →  ( i  ·  𝑥 )  ∉  ℝ+ ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝑥  ∈  ℝ  ∧  ( 0  ≤  𝑥  ∧  ( 𝑥 ↑ 2 )  =  𝐴 ) )  →  ( i  ·  𝑥 )  ∉  ℝ+ ) | 
						
							| 11 | 4 8 10 | 3jca | ⊢ ( ( 𝑥  ∈  ℝ  ∧  ( 0  ≤  𝑥  ∧  ( 𝑥 ↑ 2 )  =  𝐴 ) )  →  ( ( 𝑥 ↑ 2 )  =  𝐴  ∧  0  ≤  ( ℜ ‘ 𝑥 )  ∧  ( i  ·  𝑥 )  ∉  ℝ+ ) ) | 
						
							| 12 | 3 11 | jca | ⊢ ( ( 𝑥  ∈  ℝ  ∧  ( 0  ≤  𝑥  ∧  ( 𝑥 ↑ 2 )  =  𝐴 ) )  →  ( 𝑥  ∈  ℂ  ∧  ( ( 𝑥 ↑ 2 )  =  𝐴  ∧  0  ≤  ( ℜ ‘ 𝑥 )  ∧  ( i  ·  𝑥 )  ∉  ℝ+ ) ) ) | 
						
							| 13 | 12 | reximi2 | ⊢ ( ∃ 𝑥  ∈  ℝ ( 0  ≤  𝑥  ∧  ( 𝑥 ↑ 2 )  =  𝐴 )  →  ∃ 𝑥  ∈  ℂ ( ( 𝑥 ↑ 2 )  =  𝐴  ∧  0  ≤  ( ℜ ‘ 𝑥 )  ∧  ( i  ·  𝑥 )  ∉  ℝ+ ) ) | 
						
							| 14 | 1 13 | syl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ∃ 𝑥  ∈  ℂ ( ( 𝑥 ↑ 2 )  =  𝐴  ∧  0  ≤  ( ℜ ‘ 𝑥 )  ∧  ( i  ·  𝑥 )  ∉  ℝ+ ) ) | 
						
							| 15 |  | recn | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℂ ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  𝐴  ∈  ℂ ) | 
						
							| 17 |  | sqrmo | ⊢ ( 𝐴  ∈  ℂ  →  ∃* 𝑥  ∈  ℂ ( ( 𝑥 ↑ 2 )  =  𝐴  ∧  0  ≤  ( ℜ ‘ 𝑥 )  ∧  ( i  ·  𝑥 )  ∉  ℝ+ ) ) | 
						
							| 18 | 16 17 | syl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ∃* 𝑥  ∈  ℂ ( ( 𝑥 ↑ 2 )  =  𝐴  ∧  0  ≤  ( ℜ ‘ 𝑥 )  ∧  ( i  ·  𝑥 )  ∉  ℝ+ ) ) | 
						
							| 19 |  | reu5 | ⊢ ( ∃! 𝑥  ∈  ℂ ( ( 𝑥 ↑ 2 )  =  𝐴  ∧  0  ≤  ( ℜ ‘ 𝑥 )  ∧  ( i  ·  𝑥 )  ∉  ℝ+ )  ↔  ( ∃ 𝑥  ∈  ℂ ( ( 𝑥 ↑ 2 )  =  𝐴  ∧  0  ≤  ( ℜ ‘ 𝑥 )  ∧  ( i  ·  𝑥 )  ∉  ℝ+ )  ∧  ∃* 𝑥  ∈  ℂ ( ( 𝑥 ↑ 2 )  =  𝐴  ∧  0  ≤  ( ℜ ‘ 𝑥 )  ∧  ( i  ·  𝑥 )  ∉  ℝ+ ) ) ) | 
						
							| 20 | 14 18 19 | sylanbrc | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ∃! 𝑥  ∈  ℂ ( ( 𝑥 ↑ 2 )  =  𝐴  ∧  0  ≤  ( ℜ ‘ 𝑥 )  ∧  ( i  ·  𝑥 )  ∉  ℝ+ ) ) |