| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 2 |  | leloe | ⊢ ( ( 0  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 0  ≤  𝐴  ↔  ( 0  <  𝐴  ∨  0  =  𝐴 ) ) ) | 
						
							| 3 | 1 2 | mpan | ⊢ ( 𝐴  ∈  ℝ  →  ( 0  ≤  𝐴  ↔  ( 0  <  𝐴  ∨  0  =  𝐴 ) ) ) | 
						
							| 4 |  | elrp | ⊢ ( 𝐴  ∈  ℝ+  ↔  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 ) ) | 
						
							| 5 |  | 01sqrex | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  ∃ 𝑥  ∈  ℝ+ ( 𝑥  ≤  1  ∧  ( 𝑥 ↑ 2 )  =  𝐴 ) ) | 
						
							| 6 |  | rprege0 | ⊢ ( 𝑥  ∈  ℝ+  →  ( 𝑥  ∈  ℝ  ∧  0  ≤  𝑥 ) ) | 
						
							| 7 | 6 | anim1i | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  ( 𝑥 ↑ 2 )  =  𝐴 )  →  ( ( 𝑥  ∈  ℝ  ∧  0  ≤  𝑥 )  ∧  ( 𝑥 ↑ 2 )  =  𝐴 ) ) | 
						
							| 8 |  | anass | ⊢ ( ( ( 𝑥  ∈  ℝ  ∧  0  ≤  𝑥 )  ∧  ( 𝑥 ↑ 2 )  =  𝐴 )  ↔  ( 𝑥  ∈  ℝ  ∧  ( 0  ≤  𝑥  ∧  ( 𝑥 ↑ 2 )  =  𝐴 ) ) ) | 
						
							| 9 | 7 8 | sylib | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  ( 𝑥 ↑ 2 )  =  𝐴 )  →  ( 𝑥  ∈  ℝ  ∧  ( 0  ≤  𝑥  ∧  ( 𝑥 ↑ 2 )  =  𝐴 ) ) ) | 
						
							| 10 | 9 | adantrl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  ( 𝑥  ≤  1  ∧  ( 𝑥 ↑ 2 )  =  𝐴 ) )  →  ( 𝑥  ∈  ℝ  ∧  ( 0  ≤  𝑥  ∧  ( 𝑥 ↑ 2 )  =  𝐴 ) ) ) | 
						
							| 11 | 10 | reximi2 | ⊢ ( ∃ 𝑥  ∈  ℝ+ ( 𝑥  ≤  1  ∧  ( 𝑥 ↑ 2 )  =  𝐴 )  →  ∃ 𝑥  ∈  ℝ ( 0  ≤  𝑥  ∧  ( 𝑥 ↑ 2 )  =  𝐴 ) ) | 
						
							| 12 | 5 11 | syl | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  ∃ 𝑥  ∈  ℝ ( 0  ≤  𝑥  ∧  ( 𝑥 ↑ 2 )  =  𝐴 ) ) | 
						
							| 13 | 4 12 | sylanbr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  ∧  𝐴  ≤  1 )  →  ∃ 𝑥  ∈  ℝ ( 0  ≤  𝑥  ∧  ( 𝑥 ↑ 2 )  =  𝐴 ) ) | 
						
							| 14 | 13 | exp31 | ⊢ ( 𝐴  ∈  ℝ  →  ( 0  <  𝐴  →  ( 𝐴  ≤  1  →  ∃ 𝑥  ∈  ℝ ( 0  ≤  𝑥  ∧  ( 𝑥 ↑ 2 )  =  𝐴 ) ) ) ) | 
						
							| 15 |  | sq0 | ⊢ ( 0 ↑ 2 )  =  0 | 
						
							| 16 |  | id | ⊢ ( 0  =  𝐴  →  0  =  𝐴 ) | 
						
							| 17 | 15 16 | eqtrid | ⊢ ( 0  =  𝐴  →  ( 0 ↑ 2 )  =  𝐴 ) | 
						
							| 18 |  | 0le0 | ⊢ 0  ≤  0 | 
						
							| 19 | 17 18 | jctil | ⊢ ( 0  =  𝐴  →  ( 0  ≤  0  ∧  ( 0 ↑ 2 )  =  𝐴 ) ) | 
						
							| 20 |  | breq2 | ⊢ ( 𝑥  =  0  →  ( 0  ≤  𝑥  ↔  0  ≤  0 ) ) | 
						
							| 21 |  | oveq1 | ⊢ ( 𝑥  =  0  →  ( 𝑥 ↑ 2 )  =  ( 0 ↑ 2 ) ) | 
						
							| 22 | 21 | eqeq1d | ⊢ ( 𝑥  =  0  →  ( ( 𝑥 ↑ 2 )  =  𝐴  ↔  ( 0 ↑ 2 )  =  𝐴 ) ) | 
						
							| 23 | 20 22 | anbi12d | ⊢ ( 𝑥  =  0  →  ( ( 0  ≤  𝑥  ∧  ( 𝑥 ↑ 2 )  =  𝐴 )  ↔  ( 0  ≤  0  ∧  ( 0 ↑ 2 )  =  𝐴 ) ) ) | 
						
							| 24 | 23 | rspcev | ⊢ ( ( 0  ∈  ℝ  ∧  ( 0  ≤  0  ∧  ( 0 ↑ 2 )  =  𝐴 ) )  →  ∃ 𝑥  ∈  ℝ ( 0  ≤  𝑥  ∧  ( 𝑥 ↑ 2 )  =  𝐴 ) ) | 
						
							| 25 | 1 19 24 | sylancr | ⊢ ( 0  =  𝐴  →  ∃ 𝑥  ∈  ℝ ( 0  ≤  𝑥  ∧  ( 𝑥 ↑ 2 )  =  𝐴 ) ) | 
						
							| 26 | 25 | a1i13 | ⊢ ( 𝐴  ∈  ℝ  →  ( 0  =  𝐴  →  ( 𝐴  ≤  1  →  ∃ 𝑥  ∈  ℝ ( 0  ≤  𝑥  ∧  ( 𝑥 ↑ 2 )  =  𝐴 ) ) ) ) | 
						
							| 27 | 14 26 | jaod | ⊢ ( 𝐴  ∈  ℝ  →  ( ( 0  <  𝐴  ∨  0  =  𝐴 )  →  ( 𝐴  ≤  1  →  ∃ 𝑥  ∈  ℝ ( 0  ≤  𝑥  ∧  ( 𝑥 ↑ 2 )  =  𝐴 ) ) ) ) | 
						
							| 28 | 3 27 | sylbid | ⊢ ( 𝐴  ∈  ℝ  →  ( 0  ≤  𝐴  →  ( 𝐴  ≤  1  →  ∃ 𝑥  ∈  ℝ ( 0  ≤  𝑥  ∧  ( 𝑥 ↑ 2 )  =  𝐴 ) ) ) ) | 
						
							| 29 | 28 | imp | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ( 𝐴  ≤  1  →  ∃ 𝑥  ∈  ℝ ( 0  ≤  𝑥  ∧  ( 𝑥 ↑ 2 )  =  𝐴 ) ) ) | 
						
							| 30 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 31 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 32 |  | ltletr | ⊢ ( ( 0  ∈  ℝ  ∧  1  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( ( 0  <  1  ∧  1  ≤  𝐴 )  →  0  <  𝐴 ) ) | 
						
							| 33 | 1 31 32 | mp3an12 | ⊢ ( 𝐴  ∈  ℝ  →  ( ( 0  <  1  ∧  1  ≤  𝐴 )  →  0  <  𝐴 ) ) | 
						
							| 34 | 30 33 | mpani | ⊢ ( 𝐴  ∈  ℝ  →  ( 1  ≤  𝐴  →  0  <  𝐴 ) ) | 
						
							| 35 | 34 | imp | ⊢ ( ( 𝐴  ∈  ℝ  ∧  1  ≤  𝐴 )  →  0  <  𝐴 ) | 
						
							| 36 | 4 | biimpri | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  𝐴  ∈  ℝ+ ) | 
						
							| 37 | 35 36 | syldan | ⊢ ( ( 𝐴  ∈  ℝ  ∧  1  ≤  𝐴 )  →  𝐴  ∈  ℝ+ ) | 
						
							| 38 | 37 | rpreccld | ⊢ ( ( 𝐴  ∈  ℝ  ∧  1  ≤  𝐴 )  →  ( 1  /  𝐴 )  ∈  ℝ+ ) | 
						
							| 39 |  | simpr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  1  ≤  𝐴 )  →  1  ≤  𝐴 ) | 
						
							| 40 |  | lerec | ⊢ ( ( ( 1  ∈  ℝ  ∧  0  <  1 )  ∧  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 ) )  →  ( 1  ≤  𝐴  ↔  ( 1  /  𝐴 )  ≤  ( 1  /  1 ) ) ) | 
						
							| 41 | 31 30 40 | mpanl12 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  ( 1  ≤  𝐴  ↔  ( 1  /  𝐴 )  ≤  ( 1  /  1 ) ) ) | 
						
							| 42 | 35 41 | syldan | ⊢ ( ( 𝐴  ∈  ℝ  ∧  1  ≤  𝐴 )  →  ( 1  ≤  𝐴  ↔  ( 1  /  𝐴 )  ≤  ( 1  /  1 ) ) ) | 
						
							| 43 | 39 42 | mpbid | ⊢ ( ( 𝐴  ∈  ℝ  ∧  1  ≤  𝐴 )  →  ( 1  /  𝐴 )  ≤  ( 1  /  1 ) ) | 
						
							| 44 |  | 1div1e1 | ⊢ ( 1  /  1 )  =  1 | 
						
							| 45 | 43 44 | breqtrdi | ⊢ ( ( 𝐴  ∈  ℝ  ∧  1  ≤  𝐴 )  →  ( 1  /  𝐴 )  ≤  1 ) | 
						
							| 46 |  | 01sqrex | ⊢ ( ( ( 1  /  𝐴 )  ∈  ℝ+  ∧  ( 1  /  𝐴 )  ≤  1 )  →  ∃ 𝑦  ∈  ℝ+ ( 𝑦  ≤  1  ∧  ( 𝑦 ↑ 2 )  =  ( 1  /  𝐴 ) ) ) | 
						
							| 47 | 38 45 46 | syl2anc | ⊢ ( ( 𝐴  ∈  ℝ  ∧  1  ≤  𝐴 )  →  ∃ 𝑦  ∈  ℝ+ ( 𝑦  ≤  1  ∧  ( 𝑦 ↑ 2 )  =  ( 1  /  𝐴 ) ) ) | 
						
							| 48 |  | rpre | ⊢ ( 𝑦  ∈  ℝ+  →  𝑦  ∈  ℝ ) | 
						
							| 49 | 48 | 3ad2ant2 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  1  ≤  𝐴 )  ∧  𝑦  ∈  ℝ+  ∧  ( 𝑦  ≤  1  ∧  ( 𝑦 ↑ 2 )  =  ( 1  /  𝐴 ) ) )  →  𝑦  ∈  ℝ ) | 
						
							| 50 |  | rpgt0 | ⊢ ( 𝑦  ∈  ℝ+  →  0  <  𝑦 ) | 
						
							| 51 | 50 | 3ad2ant2 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  1  ≤  𝐴 )  ∧  𝑦  ∈  ℝ+  ∧  ( 𝑦  ≤  1  ∧  ( 𝑦 ↑ 2 )  =  ( 1  /  𝐴 ) ) )  →  0  <  𝑦 ) | 
						
							| 52 |  | gt0ne0 | ⊢ ( ( 𝑦  ∈  ℝ  ∧  0  <  𝑦 )  →  𝑦  ≠  0 ) | 
						
							| 53 |  | rereccl | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑦  ≠  0 )  →  ( 1  /  𝑦 )  ∈  ℝ ) | 
						
							| 54 | 52 53 | syldan | ⊢ ( ( 𝑦  ∈  ℝ  ∧  0  <  𝑦 )  →  ( 1  /  𝑦 )  ∈  ℝ ) | 
						
							| 55 | 49 51 54 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  1  ≤  𝐴 )  ∧  𝑦  ∈  ℝ+  ∧  ( 𝑦  ≤  1  ∧  ( 𝑦 ↑ 2 )  =  ( 1  /  𝐴 ) ) )  →  ( 1  /  𝑦 )  ∈  ℝ ) | 
						
							| 56 |  | recgt0 | ⊢ ( ( 𝑦  ∈  ℝ  ∧  0  <  𝑦 )  →  0  <  ( 1  /  𝑦 ) ) | 
						
							| 57 |  | ltle | ⊢ ( ( 0  ∈  ℝ  ∧  ( 1  /  𝑦 )  ∈  ℝ )  →  ( 0  <  ( 1  /  𝑦 )  →  0  ≤  ( 1  /  𝑦 ) ) ) | 
						
							| 58 | 1 57 | mpan | ⊢ ( ( 1  /  𝑦 )  ∈  ℝ  →  ( 0  <  ( 1  /  𝑦 )  →  0  ≤  ( 1  /  𝑦 ) ) ) | 
						
							| 59 | 54 56 58 | sylc | ⊢ ( ( 𝑦  ∈  ℝ  ∧  0  <  𝑦 )  →  0  ≤  ( 1  /  𝑦 ) ) | 
						
							| 60 | 49 51 59 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  1  ≤  𝐴 )  ∧  𝑦  ∈  ℝ+  ∧  ( 𝑦  ≤  1  ∧  ( 𝑦 ↑ 2 )  =  ( 1  /  𝐴 ) ) )  →  0  ≤  ( 1  /  𝑦 ) ) | 
						
							| 61 |  | recn | ⊢ ( 𝑦  ∈  ℝ  →  𝑦  ∈  ℂ ) | 
						
							| 62 | 61 | adantr | ⊢ ( ( 𝑦  ∈  ℝ  ∧  0  <  𝑦 )  →  𝑦  ∈  ℂ ) | 
						
							| 63 | 62 52 | sqrecd | ⊢ ( ( 𝑦  ∈  ℝ  ∧  0  <  𝑦 )  →  ( ( 1  /  𝑦 ) ↑ 2 )  =  ( 1  /  ( 𝑦 ↑ 2 ) ) ) | 
						
							| 64 | 49 51 63 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  1  ≤  𝐴 )  ∧  𝑦  ∈  ℝ+  ∧  ( 𝑦  ≤  1  ∧  ( 𝑦 ↑ 2 )  =  ( 1  /  𝐴 ) ) )  →  ( ( 1  /  𝑦 ) ↑ 2 )  =  ( 1  /  ( 𝑦 ↑ 2 ) ) ) | 
						
							| 65 |  | simp3r | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  1  ≤  𝐴 )  ∧  𝑦  ∈  ℝ+  ∧  ( 𝑦  ≤  1  ∧  ( 𝑦 ↑ 2 )  =  ( 1  /  𝐴 ) ) )  →  ( 𝑦 ↑ 2 )  =  ( 1  /  𝐴 ) ) | 
						
							| 66 | 65 | oveq2d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  1  ≤  𝐴 )  ∧  𝑦  ∈  ℝ+  ∧  ( 𝑦  ≤  1  ∧  ( 𝑦 ↑ 2 )  =  ( 1  /  𝐴 ) ) )  →  ( 1  /  ( 𝑦 ↑ 2 ) )  =  ( 1  /  ( 1  /  𝐴 ) ) ) | 
						
							| 67 |  | recn | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℂ ) | 
						
							| 68 |  | gt0ne0 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  𝐴  ≠  0 ) | 
						
							| 69 | 35 68 | syldan | ⊢ ( ( 𝐴  ∈  ℝ  ∧  1  ≤  𝐴 )  →  𝐴  ≠  0 ) | 
						
							| 70 |  | recrec | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( 1  /  ( 1  /  𝐴 ) )  =  𝐴 ) | 
						
							| 71 | 67 69 70 | syl2an2r | ⊢ ( ( 𝐴  ∈  ℝ  ∧  1  ≤  𝐴 )  →  ( 1  /  ( 1  /  𝐴 ) )  =  𝐴 ) | 
						
							| 72 | 71 | 3ad2ant1 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  1  ≤  𝐴 )  ∧  𝑦  ∈  ℝ+  ∧  ( 𝑦  ≤  1  ∧  ( 𝑦 ↑ 2 )  =  ( 1  /  𝐴 ) ) )  →  ( 1  /  ( 1  /  𝐴 ) )  =  𝐴 ) | 
						
							| 73 | 64 66 72 | 3eqtrd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  1  ≤  𝐴 )  ∧  𝑦  ∈  ℝ+  ∧  ( 𝑦  ≤  1  ∧  ( 𝑦 ↑ 2 )  =  ( 1  /  𝐴 ) ) )  →  ( ( 1  /  𝑦 ) ↑ 2 )  =  𝐴 ) | 
						
							| 74 |  | breq2 | ⊢ ( 𝑥  =  ( 1  /  𝑦 )  →  ( 0  ≤  𝑥  ↔  0  ≤  ( 1  /  𝑦 ) ) ) | 
						
							| 75 |  | oveq1 | ⊢ ( 𝑥  =  ( 1  /  𝑦 )  →  ( 𝑥 ↑ 2 )  =  ( ( 1  /  𝑦 ) ↑ 2 ) ) | 
						
							| 76 | 75 | eqeq1d | ⊢ ( 𝑥  =  ( 1  /  𝑦 )  →  ( ( 𝑥 ↑ 2 )  =  𝐴  ↔  ( ( 1  /  𝑦 ) ↑ 2 )  =  𝐴 ) ) | 
						
							| 77 | 74 76 | anbi12d | ⊢ ( 𝑥  =  ( 1  /  𝑦 )  →  ( ( 0  ≤  𝑥  ∧  ( 𝑥 ↑ 2 )  =  𝐴 )  ↔  ( 0  ≤  ( 1  /  𝑦 )  ∧  ( ( 1  /  𝑦 ) ↑ 2 )  =  𝐴 ) ) ) | 
						
							| 78 | 77 | rspcev | ⊢ ( ( ( 1  /  𝑦 )  ∈  ℝ  ∧  ( 0  ≤  ( 1  /  𝑦 )  ∧  ( ( 1  /  𝑦 ) ↑ 2 )  =  𝐴 ) )  →  ∃ 𝑥  ∈  ℝ ( 0  ≤  𝑥  ∧  ( 𝑥 ↑ 2 )  =  𝐴 ) ) | 
						
							| 79 | 55 60 73 78 | syl12anc | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  1  ≤  𝐴 )  ∧  𝑦  ∈  ℝ+  ∧  ( 𝑦  ≤  1  ∧  ( 𝑦 ↑ 2 )  =  ( 1  /  𝐴 ) ) )  →  ∃ 𝑥  ∈  ℝ ( 0  ≤  𝑥  ∧  ( 𝑥 ↑ 2 )  =  𝐴 ) ) | 
						
							| 80 | 79 | rexlimdv3a | ⊢ ( ( 𝐴  ∈  ℝ  ∧  1  ≤  𝐴 )  →  ( ∃ 𝑦  ∈  ℝ+ ( 𝑦  ≤  1  ∧  ( 𝑦 ↑ 2 )  =  ( 1  /  𝐴 ) )  →  ∃ 𝑥  ∈  ℝ ( 0  ≤  𝑥  ∧  ( 𝑥 ↑ 2 )  =  𝐴 ) ) ) | 
						
							| 81 | 47 80 | mpd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  1  ≤  𝐴 )  →  ∃ 𝑥  ∈  ℝ ( 0  ≤  𝑥  ∧  ( 𝑥 ↑ 2 )  =  𝐴 ) ) | 
						
							| 82 | 81 | ex | ⊢ ( 𝐴  ∈  ℝ  →  ( 1  ≤  𝐴  →  ∃ 𝑥  ∈  ℝ ( 0  ≤  𝑥  ∧  ( 𝑥 ↑ 2 )  =  𝐴 ) ) ) | 
						
							| 83 | 82 | adantr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ( 1  ≤  𝐴  →  ∃ 𝑥  ∈  ℝ ( 0  ≤  𝑥  ∧  ( 𝑥 ↑ 2 )  =  𝐴 ) ) ) | 
						
							| 84 |  | simpl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  𝐴  ∈  ℝ ) | 
						
							| 85 |  | letric | ⊢ ( ( 𝐴  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( 𝐴  ≤  1  ∨  1  ≤  𝐴 ) ) | 
						
							| 86 | 84 31 85 | sylancl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ( 𝐴  ≤  1  ∨  1  ≤  𝐴 ) ) | 
						
							| 87 | 29 83 86 | mpjaod | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ∃ 𝑥  ∈  ℝ ( 0  ≤  𝑥  ∧  ( 𝑥 ↑ 2 )  =  𝐴 ) ) |