Step |
Hyp |
Ref |
Expression |
1 |
|
0re |
⊢ 0 ∈ ℝ |
2 |
|
leloe |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 ≤ 𝐴 ↔ ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) ) |
3 |
1 2
|
mpan |
⊢ ( 𝐴 ∈ ℝ → ( 0 ≤ 𝐴 ↔ ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) ) |
4 |
|
elrp |
⊢ ( 𝐴 ∈ ℝ+ ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) |
5 |
|
01sqrex |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑥 ≤ 1 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) |
6 |
|
rprege0 |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) |
7 |
6
|
anim1i |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) → ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) |
8 |
|
anass |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ↔ ( 𝑥 ∈ ℝ ∧ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) ) |
9 |
7 8
|
sylib |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) → ( 𝑥 ∈ ℝ ∧ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) ) |
10 |
9
|
adantrl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑥 ≤ 1 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) → ( 𝑥 ∈ ℝ ∧ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) ) |
11 |
10
|
reximi2 |
⊢ ( ∃ 𝑥 ∈ ℝ+ ( 𝑥 ≤ 1 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) |
12 |
5 11
|
syl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ∃ 𝑥 ∈ ℝ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) |
13 |
4 12
|
sylanbr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ 𝐴 ≤ 1 ) → ∃ 𝑥 ∈ ℝ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) |
14 |
13
|
exp31 |
⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 → ( 𝐴 ≤ 1 → ∃ 𝑥 ∈ ℝ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) ) ) |
15 |
|
sq0 |
⊢ ( 0 ↑ 2 ) = 0 |
16 |
|
id |
⊢ ( 0 = 𝐴 → 0 = 𝐴 ) |
17 |
15 16
|
eqtrid |
⊢ ( 0 = 𝐴 → ( 0 ↑ 2 ) = 𝐴 ) |
18 |
|
0le0 |
⊢ 0 ≤ 0 |
19 |
17 18
|
jctil |
⊢ ( 0 = 𝐴 → ( 0 ≤ 0 ∧ ( 0 ↑ 2 ) = 𝐴 ) ) |
20 |
|
breq2 |
⊢ ( 𝑥 = 0 → ( 0 ≤ 𝑥 ↔ 0 ≤ 0 ) ) |
21 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 ↑ 2 ) = ( 0 ↑ 2 ) ) |
22 |
21
|
eqeq1d |
⊢ ( 𝑥 = 0 → ( ( 𝑥 ↑ 2 ) = 𝐴 ↔ ( 0 ↑ 2 ) = 𝐴 ) ) |
23 |
20 22
|
anbi12d |
⊢ ( 𝑥 = 0 → ( ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ↔ ( 0 ≤ 0 ∧ ( 0 ↑ 2 ) = 𝐴 ) ) ) |
24 |
23
|
rspcev |
⊢ ( ( 0 ∈ ℝ ∧ ( 0 ≤ 0 ∧ ( 0 ↑ 2 ) = 𝐴 ) ) → ∃ 𝑥 ∈ ℝ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) |
25 |
1 19 24
|
sylancr |
⊢ ( 0 = 𝐴 → ∃ 𝑥 ∈ ℝ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) |
26 |
25
|
a1i13 |
⊢ ( 𝐴 ∈ ℝ → ( 0 = 𝐴 → ( 𝐴 ≤ 1 → ∃ 𝑥 ∈ ℝ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) ) ) |
27 |
14 26
|
jaod |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 < 𝐴 ∨ 0 = 𝐴 ) → ( 𝐴 ≤ 1 → ∃ 𝑥 ∈ ℝ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) ) ) |
28 |
3 27
|
sylbid |
⊢ ( 𝐴 ∈ ℝ → ( 0 ≤ 𝐴 → ( 𝐴 ≤ 1 → ∃ 𝑥 ∈ ℝ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) ) ) |
29 |
28
|
imp |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 𝐴 ≤ 1 → ∃ 𝑥 ∈ ℝ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) ) |
30 |
|
0lt1 |
⊢ 0 < 1 |
31 |
|
1re |
⊢ 1 ∈ ℝ |
32 |
|
ltletr |
⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 0 < 1 ∧ 1 ≤ 𝐴 ) → 0 < 𝐴 ) ) |
33 |
1 31 32
|
mp3an12 |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 < 1 ∧ 1 ≤ 𝐴 ) → 0 < 𝐴 ) ) |
34 |
30 33
|
mpani |
⊢ ( 𝐴 ∈ ℝ → ( 1 ≤ 𝐴 → 0 < 𝐴 ) ) |
35 |
34
|
imp |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → 0 < 𝐴 ) |
36 |
4
|
biimpri |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ∈ ℝ+ ) |
37 |
35 36
|
syldan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → 𝐴 ∈ ℝ+ ) |
38 |
37
|
rpreccld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( 1 / 𝐴 ) ∈ ℝ+ ) |
39 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → 1 ≤ 𝐴 ) |
40 |
|
lerec |
⊢ ( ( ( 1 ∈ ℝ ∧ 0 < 1 ) ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( 1 ≤ 𝐴 ↔ ( 1 / 𝐴 ) ≤ ( 1 / 1 ) ) ) |
41 |
31 30 40
|
mpanl12 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 ≤ 𝐴 ↔ ( 1 / 𝐴 ) ≤ ( 1 / 1 ) ) ) |
42 |
35 41
|
syldan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( 1 ≤ 𝐴 ↔ ( 1 / 𝐴 ) ≤ ( 1 / 1 ) ) ) |
43 |
39 42
|
mpbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( 1 / 𝐴 ) ≤ ( 1 / 1 ) ) |
44 |
|
1div1e1 |
⊢ ( 1 / 1 ) = 1 |
45 |
43 44
|
breqtrdi |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( 1 / 𝐴 ) ≤ 1 ) |
46 |
|
01sqrex |
⊢ ( ( ( 1 / 𝐴 ) ∈ ℝ+ ∧ ( 1 / 𝐴 ) ≤ 1 ) → ∃ 𝑦 ∈ ℝ+ ( 𝑦 ≤ 1 ∧ ( 𝑦 ↑ 2 ) = ( 1 / 𝐴 ) ) ) |
47 |
38 45 46
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ∃ 𝑦 ∈ ℝ+ ( 𝑦 ≤ 1 ∧ ( 𝑦 ↑ 2 ) = ( 1 / 𝐴 ) ) ) |
48 |
|
rpre |
⊢ ( 𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ ) |
49 |
48
|
3ad2ant2 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ∧ ( 𝑦 ≤ 1 ∧ ( 𝑦 ↑ 2 ) = ( 1 / 𝐴 ) ) ) → 𝑦 ∈ ℝ ) |
50 |
|
rpgt0 |
⊢ ( 𝑦 ∈ ℝ+ → 0 < 𝑦 ) |
51 |
50
|
3ad2ant2 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ∧ ( 𝑦 ≤ 1 ∧ ( 𝑦 ↑ 2 ) = ( 1 / 𝐴 ) ) ) → 0 < 𝑦 ) |
52 |
|
gt0ne0 |
⊢ ( ( 𝑦 ∈ ℝ ∧ 0 < 𝑦 ) → 𝑦 ≠ 0 ) |
53 |
|
rereccl |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑦 ≠ 0 ) → ( 1 / 𝑦 ) ∈ ℝ ) |
54 |
52 53
|
syldan |
⊢ ( ( 𝑦 ∈ ℝ ∧ 0 < 𝑦 ) → ( 1 / 𝑦 ) ∈ ℝ ) |
55 |
49 51 54
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ∧ ( 𝑦 ≤ 1 ∧ ( 𝑦 ↑ 2 ) = ( 1 / 𝐴 ) ) ) → ( 1 / 𝑦 ) ∈ ℝ ) |
56 |
|
recgt0 |
⊢ ( ( 𝑦 ∈ ℝ ∧ 0 < 𝑦 ) → 0 < ( 1 / 𝑦 ) ) |
57 |
|
ltle |
⊢ ( ( 0 ∈ ℝ ∧ ( 1 / 𝑦 ) ∈ ℝ ) → ( 0 < ( 1 / 𝑦 ) → 0 ≤ ( 1 / 𝑦 ) ) ) |
58 |
1 57
|
mpan |
⊢ ( ( 1 / 𝑦 ) ∈ ℝ → ( 0 < ( 1 / 𝑦 ) → 0 ≤ ( 1 / 𝑦 ) ) ) |
59 |
54 56 58
|
sylc |
⊢ ( ( 𝑦 ∈ ℝ ∧ 0 < 𝑦 ) → 0 ≤ ( 1 / 𝑦 ) ) |
60 |
49 51 59
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ∧ ( 𝑦 ≤ 1 ∧ ( 𝑦 ↑ 2 ) = ( 1 / 𝐴 ) ) ) → 0 ≤ ( 1 / 𝑦 ) ) |
61 |
|
recn |
⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℂ ) |
62 |
61
|
adantr |
⊢ ( ( 𝑦 ∈ ℝ ∧ 0 < 𝑦 ) → 𝑦 ∈ ℂ ) |
63 |
62 52
|
sqrecd |
⊢ ( ( 𝑦 ∈ ℝ ∧ 0 < 𝑦 ) → ( ( 1 / 𝑦 ) ↑ 2 ) = ( 1 / ( 𝑦 ↑ 2 ) ) ) |
64 |
49 51 63
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ∧ ( 𝑦 ≤ 1 ∧ ( 𝑦 ↑ 2 ) = ( 1 / 𝐴 ) ) ) → ( ( 1 / 𝑦 ) ↑ 2 ) = ( 1 / ( 𝑦 ↑ 2 ) ) ) |
65 |
|
simp3r |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ∧ ( 𝑦 ≤ 1 ∧ ( 𝑦 ↑ 2 ) = ( 1 / 𝐴 ) ) ) → ( 𝑦 ↑ 2 ) = ( 1 / 𝐴 ) ) |
66 |
65
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ∧ ( 𝑦 ≤ 1 ∧ ( 𝑦 ↑ 2 ) = ( 1 / 𝐴 ) ) ) → ( 1 / ( 𝑦 ↑ 2 ) ) = ( 1 / ( 1 / 𝐴 ) ) ) |
67 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
68 |
|
gt0ne0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 ) |
69 |
35 68
|
syldan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → 𝐴 ≠ 0 ) |
70 |
|
recrec |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 1 / ( 1 / 𝐴 ) ) = 𝐴 ) |
71 |
67 69 70
|
syl2an2r |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( 1 / ( 1 / 𝐴 ) ) = 𝐴 ) |
72 |
71
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ∧ ( 𝑦 ≤ 1 ∧ ( 𝑦 ↑ 2 ) = ( 1 / 𝐴 ) ) ) → ( 1 / ( 1 / 𝐴 ) ) = 𝐴 ) |
73 |
64 66 72
|
3eqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ∧ ( 𝑦 ≤ 1 ∧ ( 𝑦 ↑ 2 ) = ( 1 / 𝐴 ) ) ) → ( ( 1 / 𝑦 ) ↑ 2 ) = 𝐴 ) |
74 |
|
breq2 |
⊢ ( 𝑥 = ( 1 / 𝑦 ) → ( 0 ≤ 𝑥 ↔ 0 ≤ ( 1 / 𝑦 ) ) ) |
75 |
|
oveq1 |
⊢ ( 𝑥 = ( 1 / 𝑦 ) → ( 𝑥 ↑ 2 ) = ( ( 1 / 𝑦 ) ↑ 2 ) ) |
76 |
75
|
eqeq1d |
⊢ ( 𝑥 = ( 1 / 𝑦 ) → ( ( 𝑥 ↑ 2 ) = 𝐴 ↔ ( ( 1 / 𝑦 ) ↑ 2 ) = 𝐴 ) ) |
77 |
74 76
|
anbi12d |
⊢ ( 𝑥 = ( 1 / 𝑦 ) → ( ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ↔ ( 0 ≤ ( 1 / 𝑦 ) ∧ ( ( 1 / 𝑦 ) ↑ 2 ) = 𝐴 ) ) ) |
78 |
77
|
rspcev |
⊢ ( ( ( 1 / 𝑦 ) ∈ ℝ ∧ ( 0 ≤ ( 1 / 𝑦 ) ∧ ( ( 1 / 𝑦 ) ↑ 2 ) = 𝐴 ) ) → ∃ 𝑥 ∈ ℝ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) |
79 |
55 60 73 78
|
syl12anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ∧ ( 𝑦 ≤ 1 ∧ ( 𝑦 ↑ 2 ) = ( 1 / 𝐴 ) ) ) → ∃ 𝑥 ∈ ℝ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) |
80 |
79
|
rexlimdv3a |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ∃ 𝑦 ∈ ℝ+ ( 𝑦 ≤ 1 ∧ ( 𝑦 ↑ 2 ) = ( 1 / 𝐴 ) ) → ∃ 𝑥 ∈ ℝ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) ) |
81 |
47 80
|
mpd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) |
82 |
81
|
ex |
⊢ ( 𝐴 ∈ ℝ → ( 1 ≤ 𝐴 → ∃ 𝑥 ∈ ℝ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) ) |
83 |
82
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 1 ≤ 𝐴 → ∃ 𝑥 ∈ ℝ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) ) |
84 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ ℝ ) |
85 |
|
letric |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝐴 ≤ 1 ∨ 1 ≤ 𝐴 ) ) |
86 |
84 31 85
|
sylancl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 𝐴 ≤ 1 ∨ 1 ≤ 𝐴 ) ) |
87 |
29 83 86
|
mpjaod |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) |