Step |
Hyp |
Ref |
Expression |
1 |
|
sqrtf |
⊢ √ : ℂ ⟶ ℂ |
2 |
1
|
a1i |
⊢ ( ⊤ → √ : ℂ ⟶ ℂ ) |
3 |
2
|
feqmptd |
⊢ ( ⊤ → √ = ( 𝑥 ∈ ℂ ↦ ( √ ‘ 𝑥 ) ) ) |
4 |
3
|
reseq1d |
⊢ ( ⊤ → ( √ ↾ ( 0 [,) +∞ ) ) = ( ( 𝑥 ∈ ℂ ↦ ( √ ‘ 𝑥 ) ) ↾ ( 0 [,) +∞ ) ) ) |
5 |
|
elrege0 |
⊢ ( 𝑥 ∈ ( 0 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) |
6 |
5
|
simplbi |
⊢ ( 𝑥 ∈ ( 0 [,) +∞ ) → 𝑥 ∈ ℝ ) |
7 |
6
|
recnd |
⊢ ( 𝑥 ∈ ( 0 [,) +∞ ) → 𝑥 ∈ ℂ ) |
8 |
7
|
ssriv |
⊢ ( 0 [,) +∞ ) ⊆ ℂ |
9 |
|
resmpt |
⊢ ( ( 0 [,) +∞ ) ⊆ ℂ → ( ( 𝑥 ∈ ℂ ↦ ( √ ‘ 𝑥 ) ) ↾ ( 0 [,) +∞ ) ) = ( 𝑥 ∈ ( 0 [,) +∞ ) ↦ ( √ ‘ 𝑥 ) ) ) |
10 |
8 9
|
mp1i |
⊢ ( ⊤ → ( ( 𝑥 ∈ ℂ ↦ ( √ ‘ 𝑥 ) ) ↾ ( 0 [,) +∞ ) ) = ( 𝑥 ∈ ( 0 [,) +∞ ) ↦ ( √ ‘ 𝑥 ) ) ) |
11 |
4 10
|
eqtrd |
⊢ ( ⊤ → ( √ ↾ ( 0 [,) +∞ ) ) = ( 𝑥 ∈ ( 0 [,) +∞ ) ↦ ( √ ‘ 𝑥 ) ) ) |
12 |
11
|
mptru |
⊢ ( √ ↾ ( 0 [,) +∞ ) ) = ( 𝑥 ∈ ( 0 [,) +∞ ) ↦ ( √ ‘ 𝑥 ) ) |
13 |
|
eqid |
⊢ ( 𝑥 ∈ ( 0 [,) +∞ ) ↦ ( √ ‘ 𝑥 ) ) = ( 𝑥 ∈ ( 0 [,) +∞ ) ↦ ( √ ‘ 𝑥 ) ) |
14 |
|
resqrtcl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) → ( √ ‘ 𝑥 ) ∈ ℝ ) |
15 |
5 14
|
sylbi |
⊢ ( 𝑥 ∈ ( 0 [,) +∞ ) → ( √ ‘ 𝑥 ) ∈ ℝ ) |
16 |
13 15
|
fmpti |
⊢ ( 𝑥 ∈ ( 0 [,) +∞ ) ↦ ( √ ‘ 𝑥 ) ) : ( 0 [,) +∞ ) ⟶ ℝ |
17 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
18 |
|
cxpsqrt |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 𝑥 ) ) |
19 |
7 18
|
syl |
⊢ ( 𝑥 ∈ ( 0 [,) +∞ ) → ( 𝑥 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 𝑥 ) ) |
20 |
19
|
mpteq2ia |
⊢ ( 𝑥 ∈ ( 0 [,) +∞ ) ↦ ( 𝑥 ↑𝑐 ( 1 / 2 ) ) ) = ( 𝑥 ∈ ( 0 [,) +∞ ) ↦ ( √ ‘ 𝑥 ) ) |
21 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
22 |
21
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
23 |
22
|
a1i |
⊢ ( ⊤ → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
24 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ( 0 [,) +∞ ) ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,) +∞ ) ) ∈ ( TopOn ‘ ( 0 [,) +∞ ) ) ) |
25 |
23 8 24
|
sylancl |
⊢ ( ⊤ → ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,) +∞ ) ) ∈ ( TopOn ‘ ( 0 [,) +∞ ) ) ) |
26 |
25
|
cnmptid |
⊢ ( ⊤ → ( 𝑥 ∈ ( 0 [,) +∞ ) ↦ 𝑥 ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,) +∞ ) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,) +∞ ) ) ) ) |
27 |
|
cnvimass |
⊢ ( ◡ ℜ “ ℝ+ ) ⊆ dom ℜ |
28 |
|
ref |
⊢ ℜ : ℂ ⟶ ℝ |
29 |
28
|
fdmi |
⊢ dom ℜ = ℂ |
30 |
27 29
|
sseqtri |
⊢ ( ◡ ℜ “ ℝ+ ) ⊆ ℂ |
31 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ( ◡ ℜ “ ℝ+ ) ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t ( ◡ ℜ “ ℝ+ ) ) ∈ ( TopOn ‘ ( ◡ ℜ “ ℝ+ ) ) ) |
32 |
23 30 31
|
sylancl |
⊢ ( ⊤ → ( ( TopOpen ‘ ℂfld ) ↾t ( ◡ ℜ “ ℝ+ ) ) ∈ ( TopOn ‘ ( ◡ ℜ “ ℝ+ ) ) ) |
33 |
|
halfcn |
⊢ ( 1 / 2 ) ∈ ℂ |
34 |
|
1rp |
⊢ 1 ∈ ℝ+ |
35 |
|
rphalfcl |
⊢ ( 1 ∈ ℝ+ → ( 1 / 2 ) ∈ ℝ+ ) |
36 |
34 35
|
ax-mp |
⊢ ( 1 / 2 ) ∈ ℝ+ |
37 |
|
rpre |
⊢ ( ( 1 / 2 ) ∈ ℝ+ → ( 1 / 2 ) ∈ ℝ ) |
38 |
|
rere |
⊢ ( ( 1 / 2 ) ∈ ℝ → ( ℜ ‘ ( 1 / 2 ) ) = ( 1 / 2 ) ) |
39 |
36 37 38
|
mp2b |
⊢ ( ℜ ‘ ( 1 / 2 ) ) = ( 1 / 2 ) |
40 |
39 36
|
eqeltri |
⊢ ( ℜ ‘ ( 1 / 2 ) ) ∈ ℝ+ |
41 |
|
ffn |
⊢ ( ℜ : ℂ ⟶ ℝ → ℜ Fn ℂ ) |
42 |
|
elpreima |
⊢ ( ℜ Fn ℂ → ( ( 1 / 2 ) ∈ ( ◡ ℜ “ ℝ+ ) ↔ ( ( 1 / 2 ) ∈ ℂ ∧ ( ℜ ‘ ( 1 / 2 ) ) ∈ ℝ+ ) ) ) |
43 |
28 41 42
|
mp2b |
⊢ ( ( 1 / 2 ) ∈ ( ◡ ℜ “ ℝ+ ) ↔ ( ( 1 / 2 ) ∈ ℂ ∧ ( ℜ ‘ ( 1 / 2 ) ) ∈ ℝ+ ) ) |
44 |
33 40 43
|
mpbir2an |
⊢ ( 1 / 2 ) ∈ ( ◡ ℜ “ ℝ+ ) |
45 |
44
|
a1i |
⊢ ( ⊤ → ( 1 / 2 ) ∈ ( ◡ ℜ “ ℝ+ ) ) |
46 |
25 32 45
|
cnmptc |
⊢ ( ⊤ → ( 𝑥 ∈ ( 0 [,) +∞ ) ↦ ( 1 / 2 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,) +∞ ) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( ◡ ℜ “ ℝ+ ) ) ) ) |
47 |
|
eqid |
⊢ ( ◡ ℜ “ ℝ+ ) = ( ◡ ℜ “ ℝ+ ) |
48 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,) +∞ ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,) +∞ ) ) |
49 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( ◡ ℜ “ ℝ+ ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ◡ ℜ “ ℝ+ ) ) |
50 |
47 21 48 49
|
cxpcn3 |
⊢ ( 𝑦 ∈ ( 0 [,) +∞ ) , 𝑧 ∈ ( ◡ ℜ “ ℝ+ ) ↦ ( 𝑦 ↑𝑐 𝑧 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,) +∞ ) ) ×t ( ( TopOpen ‘ ℂfld ) ↾t ( ◡ ℜ “ ℝ+ ) ) ) Cn ( TopOpen ‘ ℂfld ) ) |
51 |
50
|
a1i |
⊢ ( ⊤ → ( 𝑦 ∈ ( 0 [,) +∞ ) , 𝑧 ∈ ( ◡ ℜ “ ℝ+ ) ↦ ( 𝑦 ↑𝑐 𝑧 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,) +∞ ) ) ×t ( ( TopOpen ‘ ℂfld ) ↾t ( ◡ ℜ “ ℝ+ ) ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
52 |
|
oveq12 |
⊢ ( ( 𝑦 = 𝑥 ∧ 𝑧 = ( 1 / 2 ) ) → ( 𝑦 ↑𝑐 𝑧 ) = ( 𝑥 ↑𝑐 ( 1 / 2 ) ) ) |
53 |
25 26 46 25 32 51 52
|
cnmpt12 |
⊢ ( ⊤ → ( 𝑥 ∈ ( 0 [,) +∞ ) ↦ ( 𝑥 ↑𝑐 ( 1 / 2 ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,) +∞ ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
54 |
|
ssid |
⊢ ℂ ⊆ ℂ |
55 |
22
|
toponrestid |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
56 |
21 48 55
|
cncfcn |
⊢ ( ( ( 0 [,) +∞ ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 0 [,) +∞ ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,) +∞ ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
57 |
8 54 56
|
mp2an |
⊢ ( ( 0 [,) +∞ ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,) +∞ ) ) Cn ( TopOpen ‘ ℂfld ) ) |
58 |
53 57
|
eleqtrrdi |
⊢ ( ⊤ → ( 𝑥 ∈ ( 0 [,) +∞ ) ↦ ( 𝑥 ↑𝑐 ( 1 / 2 ) ) ) ∈ ( ( 0 [,) +∞ ) –cn→ ℂ ) ) |
59 |
20 58
|
eqeltrrid |
⊢ ( ⊤ → ( 𝑥 ∈ ( 0 [,) +∞ ) ↦ ( √ ‘ 𝑥 ) ) ∈ ( ( 0 [,) +∞ ) –cn→ ℂ ) ) |
60 |
59
|
mptru |
⊢ ( 𝑥 ∈ ( 0 [,) +∞ ) ↦ ( √ ‘ 𝑥 ) ) ∈ ( ( 0 [,) +∞ ) –cn→ ℂ ) |
61 |
|
cncffvrn |
⊢ ( ( ℝ ⊆ ℂ ∧ ( 𝑥 ∈ ( 0 [,) +∞ ) ↦ ( √ ‘ 𝑥 ) ) ∈ ( ( 0 [,) +∞ ) –cn→ ℂ ) ) → ( ( 𝑥 ∈ ( 0 [,) +∞ ) ↦ ( √ ‘ 𝑥 ) ) ∈ ( ( 0 [,) +∞ ) –cn→ ℝ ) ↔ ( 𝑥 ∈ ( 0 [,) +∞ ) ↦ ( √ ‘ 𝑥 ) ) : ( 0 [,) +∞ ) ⟶ ℝ ) ) |
62 |
17 60 61
|
mp2an |
⊢ ( ( 𝑥 ∈ ( 0 [,) +∞ ) ↦ ( √ ‘ 𝑥 ) ) ∈ ( ( 0 [,) +∞ ) –cn→ ℝ ) ↔ ( 𝑥 ∈ ( 0 [,) +∞ ) ↦ ( √ ‘ 𝑥 ) ) : ( 0 [,) +∞ ) ⟶ ℝ ) |
63 |
16 62
|
mpbir |
⊢ ( 𝑥 ∈ ( 0 [,) +∞ ) ↦ ( √ ‘ 𝑥 ) ) ∈ ( ( 0 [,) +∞ ) –cn→ ℝ ) |
64 |
12 63
|
eqeltri |
⊢ ( √ ↾ ( 0 [,) +∞ ) ) ∈ ( ( 0 [,) +∞ ) –cn→ ℝ ) |