| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
| 2 |
|
sqrtval |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ 𝐴 ) = ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ) |
| 3 |
2
|
eqcomd |
⊢ ( 𝐴 ∈ ℂ → ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) = ( √ ‘ 𝐴 ) ) |
| 4 |
1 3
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) = ( √ ‘ 𝐴 ) ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) = ( √ ‘ 𝐴 ) ) |
| 6 |
|
resqrtcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( √ ‘ 𝐴 ) ∈ ℝ ) |
| 7 |
6
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( √ ‘ 𝐴 ) ∈ ℂ ) |
| 8 |
|
resqreu |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ∃! 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) |
| 9 |
|
oveq1 |
⊢ ( 𝑥 = ( √ ‘ 𝐴 ) → ( 𝑥 ↑ 2 ) = ( ( √ ‘ 𝐴 ) ↑ 2 ) ) |
| 10 |
9
|
eqeq1d |
⊢ ( 𝑥 = ( √ ‘ 𝐴 ) → ( ( 𝑥 ↑ 2 ) = 𝐴 ↔ ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) ) |
| 11 |
|
fveq2 |
⊢ ( 𝑥 = ( √ ‘ 𝐴 ) → ( ℜ ‘ 𝑥 ) = ( ℜ ‘ ( √ ‘ 𝐴 ) ) ) |
| 12 |
11
|
breq2d |
⊢ ( 𝑥 = ( √ ‘ 𝐴 ) → ( 0 ≤ ( ℜ ‘ 𝑥 ) ↔ 0 ≤ ( ℜ ‘ ( √ ‘ 𝐴 ) ) ) ) |
| 13 |
|
oveq2 |
⊢ ( 𝑥 = ( √ ‘ 𝐴 ) → ( i · 𝑥 ) = ( i · ( √ ‘ 𝐴 ) ) ) |
| 14 |
|
neleq1 |
⊢ ( ( i · 𝑥 ) = ( i · ( √ ‘ 𝐴 ) ) → ( ( i · 𝑥 ) ∉ ℝ+ ↔ ( i · ( √ ‘ 𝐴 ) ) ∉ ℝ+ ) ) |
| 15 |
13 14
|
syl |
⊢ ( 𝑥 = ( √ ‘ 𝐴 ) → ( ( i · 𝑥 ) ∉ ℝ+ ↔ ( i · ( √ ‘ 𝐴 ) ) ∉ ℝ+ ) ) |
| 16 |
10 12 15
|
3anbi123d |
⊢ ( 𝑥 = ( √ ‘ 𝐴 ) → ( ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ↔ ( ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ ( √ ‘ 𝐴 ) ) ∧ ( i · ( √ ‘ 𝐴 ) ) ∉ ℝ+ ) ) ) |
| 17 |
16
|
riota2 |
⊢ ( ( ( √ ‘ 𝐴 ) ∈ ℂ ∧ ∃! 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) → ( ( ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ ( √ ‘ 𝐴 ) ) ∧ ( i · ( √ ‘ 𝐴 ) ) ∉ ℝ+ ) ↔ ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) = ( √ ‘ 𝐴 ) ) ) |
| 18 |
7 8 17
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ( ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ ( √ ‘ 𝐴 ) ) ∧ ( i · ( √ ‘ 𝐴 ) ) ∉ ℝ+ ) ↔ ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) = ( √ ‘ 𝐴 ) ) ) |
| 19 |
5 18
|
mpbird |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ ( √ ‘ 𝐴 ) ) ∧ ( i · ( √ ‘ 𝐴 ) ) ∉ ℝ+ ) ) |