Metamath Proof Explorer


Theorem resres

Description: The restriction of a restriction. (Contributed by NM, 27-Mar-2008)

Ref Expression
Assertion resres ( ( 𝐴𝐵 ) ↾ 𝐶 ) = ( 𝐴 ↾ ( 𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 df-res ( ( 𝐴𝐵 ) ↾ 𝐶 ) = ( ( 𝐴𝐵 ) ∩ ( 𝐶 × V ) )
2 df-res ( 𝐴𝐵 ) = ( 𝐴 ∩ ( 𝐵 × V ) )
3 2 ineq1i ( ( 𝐴𝐵 ) ∩ ( 𝐶 × V ) ) = ( ( 𝐴 ∩ ( 𝐵 × V ) ) ∩ ( 𝐶 × V ) )
4 xpindir ( ( 𝐵𝐶 ) × V ) = ( ( 𝐵 × V ) ∩ ( 𝐶 × V ) )
5 4 ineq2i ( 𝐴 ∩ ( ( 𝐵𝐶 ) × V ) ) = ( 𝐴 ∩ ( ( 𝐵 × V ) ∩ ( 𝐶 × V ) ) )
6 df-res ( 𝐴 ↾ ( 𝐵𝐶 ) ) = ( 𝐴 ∩ ( ( 𝐵𝐶 ) × V ) )
7 inass ( ( 𝐴 ∩ ( 𝐵 × V ) ) ∩ ( 𝐶 × V ) ) = ( 𝐴 ∩ ( ( 𝐵 × V ) ∩ ( 𝐶 × V ) ) )
8 5 6 7 3eqtr4ri ( ( 𝐴 ∩ ( 𝐵 × V ) ) ∩ ( 𝐶 × V ) ) = ( 𝐴 ↾ ( 𝐵𝐶 ) )
9 1 3 8 3eqtri ( ( 𝐴𝐵 ) ↾ 𝐶 ) = ( 𝐴 ↾ ( 𝐵𝐶 ) )