| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resrhm.u | ⊢ 𝑈  =  ( 𝑆  ↾s  𝑋 ) | 
						
							| 2 |  | rhmrcl2 | ⊢ ( 𝐹  ∈  ( 𝑆  RingHom  𝑇 )  →  𝑇  ∈  Ring ) | 
						
							| 3 | 1 | subrgring | ⊢ ( 𝑋  ∈  ( SubRing ‘ 𝑆 )  →  𝑈  ∈  Ring ) | 
						
							| 4 | 2 3 | anim12ci | ⊢ ( ( 𝐹  ∈  ( 𝑆  RingHom  𝑇 )  ∧  𝑋  ∈  ( SubRing ‘ 𝑆 ) )  →  ( 𝑈  ∈  Ring  ∧  𝑇  ∈  Ring ) ) | 
						
							| 5 |  | rhmghm | ⊢ ( 𝐹  ∈  ( 𝑆  RingHom  𝑇 )  →  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) ) | 
						
							| 6 |  | subrgsubg | ⊢ ( 𝑋  ∈  ( SubRing ‘ 𝑆 )  →  𝑋  ∈  ( SubGrp ‘ 𝑆 ) ) | 
						
							| 7 | 1 | resghm | ⊢ ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑋  ∈  ( SubGrp ‘ 𝑆 ) )  →  ( 𝐹  ↾  𝑋 )  ∈  ( 𝑈  GrpHom  𝑇 ) ) | 
						
							| 8 | 5 6 7 | syl2an | ⊢ ( ( 𝐹  ∈  ( 𝑆  RingHom  𝑇 )  ∧  𝑋  ∈  ( SubRing ‘ 𝑆 ) )  →  ( 𝐹  ↾  𝑋 )  ∈  ( 𝑈  GrpHom  𝑇 ) ) | 
						
							| 9 |  | eqid | ⊢ ( mulGrp ‘ 𝑆 )  =  ( mulGrp ‘ 𝑆 ) | 
						
							| 10 |  | eqid | ⊢ ( mulGrp ‘ 𝑇 )  =  ( mulGrp ‘ 𝑇 ) | 
						
							| 11 | 9 10 | rhmmhm | ⊢ ( 𝐹  ∈  ( 𝑆  RingHom  𝑇 )  →  𝐹  ∈  ( ( mulGrp ‘ 𝑆 )  MndHom  ( mulGrp ‘ 𝑇 ) ) ) | 
						
							| 12 | 9 | subrgsubm | ⊢ ( 𝑋  ∈  ( SubRing ‘ 𝑆 )  →  𝑋  ∈  ( SubMnd ‘ ( mulGrp ‘ 𝑆 ) ) ) | 
						
							| 13 |  | eqid | ⊢ ( ( mulGrp ‘ 𝑆 )  ↾s  𝑋 )  =  ( ( mulGrp ‘ 𝑆 )  ↾s  𝑋 ) | 
						
							| 14 | 13 | resmhm | ⊢ ( ( 𝐹  ∈  ( ( mulGrp ‘ 𝑆 )  MndHom  ( mulGrp ‘ 𝑇 ) )  ∧  𝑋  ∈  ( SubMnd ‘ ( mulGrp ‘ 𝑆 ) ) )  →  ( 𝐹  ↾  𝑋 )  ∈  ( ( ( mulGrp ‘ 𝑆 )  ↾s  𝑋 )  MndHom  ( mulGrp ‘ 𝑇 ) ) ) | 
						
							| 15 | 11 12 14 | syl2an | ⊢ ( ( 𝐹  ∈  ( 𝑆  RingHom  𝑇 )  ∧  𝑋  ∈  ( SubRing ‘ 𝑆 ) )  →  ( 𝐹  ↾  𝑋 )  ∈  ( ( ( mulGrp ‘ 𝑆 )  ↾s  𝑋 )  MndHom  ( mulGrp ‘ 𝑇 ) ) ) | 
						
							| 16 |  | rhmrcl1 | ⊢ ( 𝐹  ∈  ( 𝑆  RingHom  𝑇 )  →  𝑆  ∈  Ring ) | 
						
							| 17 | 1 9 | mgpress | ⊢ ( ( 𝑆  ∈  Ring  ∧  𝑋  ∈  ( SubRing ‘ 𝑆 ) )  →  ( ( mulGrp ‘ 𝑆 )  ↾s  𝑋 )  =  ( mulGrp ‘ 𝑈 ) ) | 
						
							| 18 | 16 17 | sylan | ⊢ ( ( 𝐹  ∈  ( 𝑆  RingHom  𝑇 )  ∧  𝑋  ∈  ( SubRing ‘ 𝑆 ) )  →  ( ( mulGrp ‘ 𝑆 )  ↾s  𝑋 )  =  ( mulGrp ‘ 𝑈 ) ) | 
						
							| 19 | 18 | oveq1d | ⊢ ( ( 𝐹  ∈  ( 𝑆  RingHom  𝑇 )  ∧  𝑋  ∈  ( SubRing ‘ 𝑆 ) )  →  ( ( ( mulGrp ‘ 𝑆 )  ↾s  𝑋 )  MndHom  ( mulGrp ‘ 𝑇 ) )  =  ( ( mulGrp ‘ 𝑈 )  MndHom  ( mulGrp ‘ 𝑇 ) ) ) | 
						
							| 20 | 15 19 | eleqtrd | ⊢ ( ( 𝐹  ∈  ( 𝑆  RingHom  𝑇 )  ∧  𝑋  ∈  ( SubRing ‘ 𝑆 ) )  →  ( 𝐹  ↾  𝑋 )  ∈  ( ( mulGrp ‘ 𝑈 )  MndHom  ( mulGrp ‘ 𝑇 ) ) ) | 
						
							| 21 | 8 20 | jca | ⊢ ( ( 𝐹  ∈  ( 𝑆  RingHom  𝑇 )  ∧  𝑋  ∈  ( SubRing ‘ 𝑆 ) )  →  ( ( 𝐹  ↾  𝑋 )  ∈  ( 𝑈  GrpHom  𝑇 )  ∧  ( 𝐹  ↾  𝑋 )  ∈  ( ( mulGrp ‘ 𝑈 )  MndHom  ( mulGrp ‘ 𝑇 ) ) ) ) | 
						
							| 22 |  | eqid | ⊢ ( mulGrp ‘ 𝑈 )  =  ( mulGrp ‘ 𝑈 ) | 
						
							| 23 | 22 10 | isrhm | ⊢ ( ( 𝐹  ↾  𝑋 )  ∈  ( 𝑈  RingHom  𝑇 )  ↔  ( ( 𝑈  ∈  Ring  ∧  𝑇  ∈  Ring )  ∧  ( ( 𝐹  ↾  𝑋 )  ∈  ( 𝑈  GrpHom  𝑇 )  ∧  ( 𝐹  ↾  𝑋 )  ∈  ( ( mulGrp ‘ 𝑈 )  MndHom  ( mulGrp ‘ 𝑇 ) ) ) ) ) | 
						
							| 24 | 4 21 23 | sylanbrc | ⊢ ( ( 𝐹  ∈  ( 𝑆  RingHom  𝑇 )  ∧  𝑋  ∈  ( SubRing ‘ 𝑆 ) )  →  ( 𝐹  ↾  𝑋 )  ∈  ( 𝑈  RingHom  𝑇 ) ) |