Step |
Hyp |
Ref |
Expression |
1 |
|
resrhm.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑋 ) |
2 |
|
rhmrcl2 |
⊢ ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) → 𝑇 ∈ Ring ) |
3 |
1
|
subrgring |
⊢ ( 𝑋 ∈ ( SubRing ‘ 𝑆 ) → 𝑈 ∈ Ring ) |
4 |
2 3
|
anim12ci |
⊢ ( ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) ∧ 𝑋 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝑈 ∈ Ring ∧ 𝑇 ∈ Ring ) ) |
5 |
|
rhmghm |
⊢ ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
6 |
|
subrgsubg |
⊢ ( 𝑋 ∈ ( SubRing ‘ 𝑆 ) → 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) |
7 |
1
|
resghm |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) → ( 𝐹 ↾ 𝑋 ) ∈ ( 𝑈 GrpHom 𝑇 ) ) |
8 |
5 6 7
|
syl2an |
⊢ ( ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) ∧ 𝑋 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝐹 ↾ 𝑋 ) ∈ ( 𝑈 GrpHom 𝑇 ) ) |
9 |
|
eqid |
⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) |
10 |
|
eqid |
⊢ ( mulGrp ‘ 𝑇 ) = ( mulGrp ‘ 𝑇 ) |
11 |
9 10
|
rhmmhm |
⊢ ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) |
12 |
9
|
subrgsubm |
⊢ ( 𝑋 ∈ ( SubRing ‘ 𝑆 ) → 𝑋 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑆 ) ) ) |
13 |
|
eqid |
⊢ ( ( mulGrp ‘ 𝑆 ) ↾s 𝑋 ) = ( ( mulGrp ‘ 𝑆 ) ↾s 𝑋 ) |
14 |
13
|
resmhm |
⊢ ( ( 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ∧ 𝑋 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑆 ) ) ) → ( 𝐹 ↾ 𝑋 ) ∈ ( ( ( mulGrp ‘ 𝑆 ) ↾s 𝑋 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) |
15 |
11 12 14
|
syl2an |
⊢ ( ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) ∧ 𝑋 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝐹 ↾ 𝑋 ) ∈ ( ( ( mulGrp ‘ 𝑆 ) ↾s 𝑋 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) |
16 |
|
rhmrcl1 |
⊢ ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) → 𝑆 ∈ Ring ) |
17 |
1 9
|
mgpress |
⊢ ( ( 𝑆 ∈ Ring ∧ 𝑋 ∈ ( SubRing ‘ 𝑆 ) ) → ( ( mulGrp ‘ 𝑆 ) ↾s 𝑋 ) = ( mulGrp ‘ 𝑈 ) ) |
18 |
16 17
|
sylan |
⊢ ( ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) ∧ 𝑋 ∈ ( SubRing ‘ 𝑆 ) ) → ( ( mulGrp ‘ 𝑆 ) ↾s 𝑋 ) = ( mulGrp ‘ 𝑈 ) ) |
19 |
18
|
oveq1d |
⊢ ( ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) ∧ 𝑋 ∈ ( SubRing ‘ 𝑆 ) ) → ( ( ( mulGrp ‘ 𝑆 ) ↾s 𝑋 ) MndHom ( mulGrp ‘ 𝑇 ) ) = ( ( mulGrp ‘ 𝑈 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) |
20 |
15 19
|
eleqtrd |
⊢ ( ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) ∧ 𝑋 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝐹 ↾ 𝑋 ) ∈ ( ( mulGrp ‘ 𝑈 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) |
21 |
8 20
|
jca |
⊢ ( ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) ∧ 𝑋 ∈ ( SubRing ‘ 𝑆 ) ) → ( ( 𝐹 ↾ 𝑋 ) ∈ ( 𝑈 GrpHom 𝑇 ) ∧ ( 𝐹 ↾ 𝑋 ) ∈ ( ( mulGrp ‘ 𝑈 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) ) |
22 |
|
eqid |
⊢ ( mulGrp ‘ 𝑈 ) = ( mulGrp ‘ 𝑈 ) |
23 |
22 10
|
isrhm |
⊢ ( ( 𝐹 ↾ 𝑋 ) ∈ ( 𝑈 RingHom 𝑇 ) ↔ ( ( 𝑈 ∈ Ring ∧ 𝑇 ∈ Ring ) ∧ ( ( 𝐹 ↾ 𝑋 ) ∈ ( 𝑈 GrpHom 𝑇 ) ∧ ( 𝐹 ↾ 𝑋 ) ∈ ( ( mulGrp ‘ 𝑈 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) ) ) |
24 |
4 21 23
|
sylanbrc |
⊢ ( ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) ∧ 𝑋 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝐹 ↾ 𝑋 ) ∈ ( 𝑈 RingHom 𝑇 ) ) |