| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resrhm2b.u | ⊢ 𝑈  =  ( 𝑇  ↾s  𝑋 ) | 
						
							| 2 |  | subrgsubg | ⊢ ( 𝑋  ∈  ( SubRing ‘ 𝑇 )  →  𝑋  ∈  ( SubGrp ‘ 𝑇 ) ) | 
						
							| 3 | 1 | resghm2b | ⊢ ( ( 𝑋  ∈  ( SubGrp ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  →  ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ↔  𝐹  ∈  ( 𝑆  GrpHom  𝑈 ) ) ) | 
						
							| 4 | 2 3 | sylan | ⊢ ( ( 𝑋  ∈  ( SubRing ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  →  ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ↔  𝐹  ∈  ( 𝑆  GrpHom  𝑈 ) ) ) | 
						
							| 5 |  | eqid | ⊢ ( mulGrp ‘ 𝑇 )  =  ( mulGrp ‘ 𝑇 ) | 
						
							| 6 | 5 | subrgsubm | ⊢ ( 𝑋  ∈  ( SubRing ‘ 𝑇 )  →  𝑋  ∈  ( SubMnd ‘ ( mulGrp ‘ 𝑇 ) ) ) | 
						
							| 7 |  | eqid | ⊢ ( ( mulGrp ‘ 𝑇 )  ↾s  𝑋 )  =  ( ( mulGrp ‘ 𝑇 )  ↾s  𝑋 ) | 
						
							| 8 | 7 | resmhm2b | ⊢ ( ( 𝑋  ∈  ( SubMnd ‘ ( mulGrp ‘ 𝑇 ) )  ∧  ran  𝐹  ⊆  𝑋 )  →  ( 𝐹  ∈  ( ( mulGrp ‘ 𝑆 )  MndHom  ( mulGrp ‘ 𝑇 ) )  ↔  𝐹  ∈  ( ( mulGrp ‘ 𝑆 )  MndHom  ( ( mulGrp ‘ 𝑇 )  ↾s  𝑋 ) ) ) ) | 
						
							| 9 | 6 8 | sylan | ⊢ ( ( 𝑋  ∈  ( SubRing ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  →  ( 𝐹  ∈  ( ( mulGrp ‘ 𝑆 )  MndHom  ( mulGrp ‘ 𝑇 ) )  ↔  𝐹  ∈  ( ( mulGrp ‘ 𝑆 )  MndHom  ( ( mulGrp ‘ 𝑇 )  ↾s  𝑋 ) ) ) ) | 
						
							| 10 |  | subrgrcl | ⊢ ( 𝑋  ∈  ( SubRing ‘ 𝑇 )  →  𝑇  ∈  Ring ) | 
						
							| 11 | 1 5 | mgpress | ⊢ ( ( 𝑇  ∈  Ring  ∧  𝑋  ∈  ( SubRing ‘ 𝑇 ) )  →  ( ( mulGrp ‘ 𝑇 )  ↾s  𝑋 )  =  ( mulGrp ‘ 𝑈 ) ) | 
						
							| 12 | 10 11 | mpancom | ⊢ ( 𝑋  ∈  ( SubRing ‘ 𝑇 )  →  ( ( mulGrp ‘ 𝑇 )  ↾s  𝑋 )  =  ( mulGrp ‘ 𝑈 ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝑋  ∈  ( SubRing ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  →  ( ( mulGrp ‘ 𝑇 )  ↾s  𝑋 )  =  ( mulGrp ‘ 𝑈 ) ) | 
						
							| 14 | 13 | oveq2d | ⊢ ( ( 𝑋  ∈  ( SubRing ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  →  ( ( mulGrp ‘ 𝑆 )  MndHom  ( ( mulGrp ‘ 𝑇 )  ↾s  𝑋 ) )  =  ( ( mulGrp ‘ 𝑆 )  MndHom  ( mulGrp ‘ 𝑈 ) ) ) | 
						
							| 15 | 14 | eleq2d | ⊢ ( ( 𝑋  ∈  ( SubRing ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  →  ( 𝐹  ∈  ( ( mulGrp ‘ 𝑆 )  MndHom  ( ( mulGrp ‘ 𝑇 )  ↾s  𝑋 ) )  ↔  𝐹  ∈  ( ( mulGrp ‘ 𝑆 )  MndHom  ( mulGrp ‘ 𝑈 ) ) ) ) | 
						
							| 16 | 9 15 | bitrd | ⊢ ( ( 𝑋  ∈  ( SubRing ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  →  ( 𝐹  ∈  ( ( mulGrp ‘ 𝑆 )  MndHom  ( mulGrp ‘ 𝑇 ) )  ↔  𝐹  ∈  ( ( mulGrp ‘ 𝑆 )  MndHom  ( mulGrp ‘ 𝑈 ) ) ) ) | 
						
							| 17 | 4 16 | anbi12d | ⊢ ( ( 𝑋  ∈  ( SubRing ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  →  ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝐹  ∈  ( ( mulGrp ‘ 𝑆 )  MndHom  ( mulGrp ‘ 𝑇 ) ) )  ↔  ( 𝐹  ∈  ( 𝑆  GrpHom  𝑈 )  ∧  𝐹  ∈  ( ( mulGrp ‘ 𝑆 )  MndHom  ( mulGrp ‘ 𝑈 ) ) ) ) ) | 
						
							| 18 | 17 | anbi2d | ⊢ ( ( 𝑋  ∈  ( SubRing ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  →  ( ( 𝑆  ∈  Ring  ∧  ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝐹  ∈  ( ( mulGrp ‘ 𝑆 )  MndHom  ( mulGrp ‘ 𝑇 ) ) ) )  ↔  ( 𝑆  ∈  Ring  ∧  ( 𝐹  ∈  ( 𝑆  GrpHom  𝑈 )  ∧  𝐹  ∈  ( ( mulGrp ‘ 𝑆 )  MndHom  ( mulGrp ‘ 𝑈 ) ) ) ) ) ) | 
						
							| 19 | 10 | adantr | ⊢ ( ( 𝑋  ∈  ( SubRing ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  →  𝑇  ∈  Ring ) | 
						
							| 20 | 19 | biantrud | ⊢ ( ( 𝑋  ∈  ( SubRing ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  →  ( 𝑆  ∈  Ring  ↔  ( 𝑆  ∈  Ring  ∧  𝑇  ∈  Ring ) ) ) | 
						
							| 21 | 20 | anbi1d | ⊢ ( ( 𝑋  ∈  ( SubRing ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  →  ( ( 𝑆  ∈  Ring  ∧  ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝐹  ∈  ( ( mulGrp ‘ 𝑆 )  MndHom  ( mulGrp ‘ 𝑇 ) ) ) )  ↔  ( ( 𝑆  ∈  Ring  ∧  𝑇  ∈  Ring )  ∧  ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝐹  ∈  ( ( mulGrp ‘ 𝑆 )  MndHom  ( mulGrp ‘ 𝑇 ) ) ) ) ) ) | 
						
							| 22 | 1 | subrgring | ⊢ ( 𝑋  ∈  ( SubRing ‘ 𝑇 )  →  𝑈  ∈  Ring ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝑋  ∈  ( SubRing ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  →  𝑈  ∈  Ring ) | 
						
							| 24 | 23 | biantrud | ⊢ ( ( 𝑋  ∈  ( SubRing ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  →  ( 𝑆  ∈  Ring  ↔  ( 𝑆  ∈  Ring  ∧  𝑈  ∈  Ring ) ) ) | 
						
							| 25 | 24 | anbi1d | ⊢ ( ( 𝑋  ∈  ( SubRing ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  →  ( ( 𝑆  ∈  Ring  ∧  ( 𝐹  ∈  ( 𝑆  GrpHom  𝑈 )  ∧  𝐹  ∈  ( ( mulGrp ‘ 𝑆 )  MndHom  ( mulGrp ‘ 𝑈 ) ) ) )  ↔  ( ( 𝑆  ∈  Ring  ∧  𝑈  ∈  Ring )  ∧  ( 𝐹  ∈  ( 𝑆  GrpHom  𝑈 )  ∧  𝐹  ∈  ( ( mulGrp ‘ 𝑆 )  MndHom  ( mulGrp ‘ 𝑈 ) ) ) ) ) ) | 
						
							| 26 | 18 21 25 | 3bitr3d | ⊢ ( ( 𝑋  ∈  ( SubRing ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  →  ( ( ( 𝑆  ∈  Ring  ∧  𝑇  ∈  Ring )  ∧  ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝐹  ∈  ( ( mulGrp ‘ 𝑆 )  MndHom  ( mulGrp ‘ 𝑇 ) ) ) )  ↔  ( ( 𝑆  ∈  Ring  ∧  𝑈  ∈  Ring )  ∧  ( 𝐹  ∈  ( 𝑆  GrpHom  𝑈 )  ∧  𝐹  ∈  ( ( mulGrp ‘ 𝑆 )  MndHom  ( mulGrp ‘ 𝑈 ) ) ) ) ) ) | 
						
							| 27 |  | eqid | ⊢ ( mulGrp ‘ 𝑆 )  =  ( mulGrp ‘ 𝑆 ) | 
						
							| 28 | 27 5 | isrhm | ⊢ ( 𝐹  ∈  ( 𝑆  RingHom  𝑇 )  ↔  ( ( 𝑆  ∈  Ring  ∧  𝑇  ∈  Ring )  ∧  ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝐹  ∈  ( ( mulGrp ‘ 𝑆 )  MndHom  ( mulGrp ‘ 𝑇 ) ) ) ) ) | 
						
							| 29 |  | eqid | ⊢ ( mulGrp ‘ 𝑈 )  =  ( mulGrp ‘ 𝑈 ) | 
						
							| 30 | 27 29 | isrhm | ⊢ ( 𝐹  ∈  ( 𝑆  RingHom  𝑈 )  ↔  ( ( 𝑆  ∈  Ring  ∧  𝑈  ∈  Ring )  ∧  ( 𝐹  ∈  ( 𝑆  GrpHom  𝑈 )  ∧  𝐹  ∈  ( ( mulGrp ‘ 𝑆 )  MndHom  ( mulGrp ‘ 𝑈 ) ) ) ) ) | 
						
							| 31 | 26 28 30 | 3bitr4g | ⊢ ( ( 𝑋  ∈  ( SubRing ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  →  ( 𝐹  ∈  ( 𝑆  RingHom  𝑇 )  ↔  𝐹  ∈  ( 𝑆  RingHom  𝑈 ) ) ) |