Step |
Hyp |
Ref |
Expression |
1 |
|
resrhm2b.u |
⊢ 𝑈 = ( 𝑇 ↾s 𝑋 ) |
2 |
|
subrgsubg |
⊢ ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) → 𝑋 ∈ ( SubGrp ‘ 𝑇 ) ) |
3 |
1
|
resghm2b |
⊢ ( ( 𝑋 ∈ ( SubGrp ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ↔ 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) ) ) |
4 |
2 3
|
sylan |
⊢ ( ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ↔ 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) ) ) |
5 |
|
eqid |
⊢ ( mulGrp ‘ 𝑇 ) = ( mulGrp ‘ 𝑇 ) |
6 |
5
|
subrgsubm |
⊢ ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) → 𝑋 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑇 ) ) ) |
7 |
|
eqid |
⊢ ( ( mulGrp ‘ 𝑇 ) ↾s 𝑋 ) = ( ( mulGrp ‘ 𝑇 ) ↾s 𝑋 ) |
8 |
7
|
resmhm2b |
⊢ ( ( 𝑋 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑇 ) ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ↔ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( ( mulGrp ‘ 𝑇 ) ↾s 𝑋 ) ) ) ) |
9 |
6 8
|
sylan |
⊢ ( ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ↔ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( ( mulGrp ‘ 𝑇 ) ↾s 𝑋 ) ) ) ) |
10 |
|
subrgrcl |
⊢ ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) → 𝑇 ∈ Ring ) |
11 |
1 5
|
mgpress |
⊢ ( ( 𝑇 ∈ Ring ∧ 𝑋 ∈ ( SubRing ‘ 𝑇 ) ) → ( ( mulGrp ‘ 𝑇 ) ↾s 𝑋 ) = ( mulGrp ‘ 𝑈 ) ) |
12 |
10 11
|
mpancom |
⊢ ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) → ( ( mulGrp ‘ 𝑇 ) ↾s 𝑋 ) = ( mulGrp ‘ 𝑈 ) ) |
13 |
12
|
adantr |
⊢ ( ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( ( mulGrp ‘ 𝑇 ) ↾s 𝑋 ) = ( mulGrp ‘ 𝑈 ) ) |
14 |
13
|
oveq2d |
⊢ ( ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( ( mulGrp ‘ 𝑆 ) MndHom ( ( mulGrp ‘ 𝑇 ) ↾s 𝑋 ) ) = ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑈 ) ) ) |
15 |
14
|
eleq2d |
⊢ ( ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( ( mulGrp ‘ 𝑇 ) ↾s 𝑋 ) ) ↔ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑈 ) ) ) ) |
16 |
9 15
|
bitrd |
⊢ ( ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ↔ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑈 ) ) ) ) |
17 |
4 16
|
anbi12d |
⊢ ( ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) ↔ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑈 ) ) ) ) ) |
18 |
17
|
anbi2d |
⊢ ( ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( ( 𝑆 ∈ Ring ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) ) ↔ ( 𝑆 ∈ Ring ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑈 ) ) ) ) ) ) |
19 |
10
|
adantr |
⊢ ( ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → 𝑇 ∈ Ring ) |
20 |
19
|
biantrud |
⊢ ( ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( 𝑆 ∈ Ring ↔ ( 𝑆 ∈ Ring ∧ 𝑇 ∈ Ring ) ) ) |
21 |
20
|
anbi1d |
⊢ ( ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( ( 𝑆 ∈ Ring ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) ) ↔ ( ( 𝑆 ∈ Ring ∧ 𝑇 ∈ Ring ) ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) ) ) ) |
22 |
1
|
subrgring |
⊢ ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) → 𝑈 ∈ Ring ) |
23 |
22
|
adantr |
⊢ ( ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → 𝑈 ∈ Ring ) |
24 |
23
|
biantrud |
⊢ ( ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( 𝑆 ∈ Ring ↔ ( 𝑆 ∈ Ring ∧ 𝑈 ∈ Ring ) ) ) |
25 |
24
|
anbi1d |
⊢ ( ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( ( 𝑆 ∈ Ring ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑈 ) ) ) ) ↔ ( ( 𝑆 ∈ Ring ∧ 𝑈 ∈ Ring ) ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑈 ) ) ) ) ) ) |
26 |
18 21 25
|
3bitr3d |
⊢ ( ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( ( ( 𝑆 ∈ Ring ∧ 𝑇 ∈ Ring ) ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) ) ↔ ( ( 𝑆 ∈ Ring ∧ 𝑈 ∈ Ring ) ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑈 ) ) ) ) ) ) |
27 |
|
eqid |
⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) |
28 |
27 5
|
isrhm |
⊢ ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) ↔ ( ( 𝑆 ∈ Ring ∧ 𝑇 ∈ Ring ) ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) ) ) |
29 |
|
eqid |
⊢ ( mulGrp ‘ 𝑈 ) = ( mulGrp ‘ 𝑈 ) |
30 |
27 29
|
isrhm |
⊢ ( 𝐹 ∈ ( 𝑆 RingHom 𝑈 ) ↔ ( ( 𝑆 ∈ Ring ∧ 𝑈 ∈ Ring ) ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑈 ) ) ) ) ) |
31 |
26 28 30
|
3bitr4g |
⊢ ( ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) ↔ 𝐹 ∈ ( 𝑆 RingHom 𝑈 ) ) ) |