Metamath Proof Explorer


Theorem ress0

Description: All restrictions of the null set are trivial. (Contributed by Stefan O'Rear, 29-Nov-2014) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion ress0 ( ∅ ↾s 𝐴 ) = ∅

Proof

Step Hyp Ref Expression
1 0ss ∅ ⊆ 𝐴
2 0ex ∅ ∈ V
3 eqid ( ∅ ↾s 𝐴 ) = ( ∅ ↾s 𝐴 )
4 base0 ∅ = ( Base ‘ ∅ )
5 3 4 ressid2 ( ( ∅ ⊆ 𝐴 ∧ ∅ ∈ V ∧ 𝐴 ∈ V ) → ( ∅ ↾s 𝐴 ) = ∅ )
6 1 2 5 mp3an12 ( 𝐴 ∈ V → ( ∅ ↾s 𝐴 ) = ∅ )
7 reldmress Rel dom ↾s
8 7 ovprc2 ( ¬ 𝐴 ∈ V → ( ∅ ↾s 𝐴 ) = ∅ )
9 6 8 pm2.61i ( ∅ ↾s 𝐴 ) = ∅