Description: All restrictions of the null set are trivial. (Contributed by Stefan O'Rear, 29-Nov-2014) (Revised by Mario Carneiro, 30-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | ress0 | ⊢ ( ∅ ↾s 𝐴 ) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss | ⊢ ∅ ⊆ 𝐴 | |
2 | 0ex | ⊢ ∅ ∈ V | |
3 | eqid | ⊢ ( ∅ ↾s 𝐴 ) = ( ∅ ↾s 𝐴 ) | |
4 | base0 | ⊢ ∅ = ( Base ‘ ∅ ) | |
5 | 3 4 | ressid2 | ⊢ ( ( ∅ ⊆ 𝐴 ∧ ∅ ∈ V ∧ 𝐴 ∈ V ) → ( ∅ ↾s 𝐴 ) = ∅ ) |
6 | 1 2 5 | mp3an12 | ⊢ ( 𝐴 ∈ V → ( ∅ ↾s 𝐴 ) = ∅ ) |
7 | reldmress | ⊢ Rel dom ↾s | |
8 | 7 | ovprc2 | ⊢ ( ¬ 𝐴 ∈ V → ( ∅ ↾s 𝐴 ) = ∅ ) |
9 | 6 8 | pm2.61i | ⊢ ( ∅ ↾s 𝐴 ) = ∅ |