| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ress0g.s | ⊢ 𝑆  =  ( 𝑅  ↾s  𝐴 ) | 
						
							| 2 |  | ress0g.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 3 |  | ress0g.0 | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 4 | 1 2 | ressbas2 | ⊢ ( 𝐴  ⊆  𝐵  →  𝐴  =  ( Base ‘ 𝑆 ) ) | 
						
							| 5 | 4 | 3ad2ant3 | ⊢ ( ( 𝑅  ∈  Mnd  ∧   0   ∈  𝐴  ∧  𝐴  ⊆  𝐵 )  →  𝐴  =  ( Base ‘ 𝑆 ) ) | 
						
							| 6 |  | simp3 | ⊢ ( ( 𝑅  ∈  Mnd  ∧   0   ∈  𝐴  ∧  𝐴  ⊆  𝐵 )  →  𝐴  ⊆  𝐵 ) | 
						
							| 7 | 2 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 8 |  | ssexg | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ∈  V )  →  𝐴  ∈  V ) | 
						
							| 9 | 6 7 8 | sylancl | ⊢ ( ( 𝑅  ∈  Mnd  ∧   0   ∈  𝐴  ∧  𝐴  ⊆  𝐵 )  →  𝐴  ∈  V ) | 
						
							| 10 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 11 | 1 10 | ressplusg | ⊢ ( 𝐴  ∈  V  →  ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑆 ) ) | 
						
							| 12 | 9 11 | syl | ⊢ ( ( 𝑅  ∈  Mnd  ∧   0   ∈  𝐴  ∧  𝐴  ⊆  𝐵 )  →  ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑆 ) ) | 
						
							| 13 |  | simp2 | ⊢ ( ( 𝑅  ∈  Mnd  ∧   0   ∈  𝐴  ∧  𝐴  ⊆  𝐵 )  →   0   ∈  𝐴 ) | 
						
							| 14 |  | simpl1 | ⊢ ( ( ( 𝑅  ∈  Mnd  ∧   0   ∈  𝐴  ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  𝑅  ∈  Mnd ) | 
						
							| 15 | 6 | sselda | ⊢ ( ( ( 𝑅  ∈  Mnd  ∧   0   ∈  𝐴  ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐵 ) | 
						
							| 16 | 2 10 3 | mndlid | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝑥  ∈  𝐵 )  →  (  0  ( +g ‘ 𝑅 ) 𝑥 )  =  𝑥 ) | 
						
							| 17 | 14 15 16 | syl2anc | ⊢ ( ( ( 𝑅  ∈  Mnd  ∧   0   ∈  𝐴  ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  (  0  ( +g ‘ 𝑅 ) 𝑥 )  =  𝑥 ) | 
						
							| 18 | 2 10 3 | mndrid | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥 ( +g ‘ 𝑅 )  0  )  =  𝑥 ) | 
						
							| 19 | 14 15 18 | syl2anc | ⊢ ( ( ( 𝑅  ∈  Mnd  ∧   0   ∈  𝐴  ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥 ( +g ‘ 𝑅 )  0  )  =  𝑥 ) | 
						
							| 20 | 5 12 13 17 19 | grpidd | ⊢ ( ( 𝑅  ∈  Mnd  ∧   0   ∈  𝐴  ∧  𝐴  ⊆  𝐵 )  →   0   =  ( 0g ‘ 𝑆 ) ) |