| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ress0g.s |
⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) |
| 2 |
|
ress0g.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 3 |
|
ress0g.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 4 |
1 2
|
ressbas2 |
⊢ ( 𝐴 ⊆ 𝐵 → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 5 |
4
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 6 |
|
simp3 |
⊢ ( ( 𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 ⊆ 𝐵 ) |
| 7 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
| 8 |
|
ssexg |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ V ) → 𝐴 ∈ V ) |
| 9 |
6 7 8
|
sylancl |
⊢ ( ( 𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 ∈ V ) |
| 10 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 11 |
1 10
|
ressplusg |
⊢ ( 𝐴 ∈ V → ( +g ‘ 𝑅 ) = ( +g ‘ 𝑆 ) ) |
| 12 |
9 11
|
syl |
⊢ ( ( 𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) → ( +g ‘ 𝑅 ) = ( +g ‘ 𝑆 ) ) |
| 13 |
|
simp2 |
⊢ ( ( 𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) → 0 ∈ 𝐴 ) |
| 14 |
|
simpl1 |
⊢ ( ( ( 𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑅 ∈ Mnd ) |
| 15 |
6
|
sselda |
⊢ ( ( ( 𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) |
| 16 |
2 10 3
|
mndlid |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ) → ( 0 ( +g ‘ 𝑅 ) 𝑥 ) = 𝑥 ) |
| 17 |
14 15 16
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 0 ( +g ‘ 𝑅 ) 𝑥 ) = 𝑥 ) |
| 18 |
2 10 3
|
mndrid |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝑅 ) 0 ) = 𝑥 ) |
| 19 |
14 15 18
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ( +g ‘ 𝑅 ) 0 ) = 𝑥 ) |
| 20 |
5 12 13 17 19
|
grpidd |
⊢ ( ( 𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) → 0 = ( 0g ‘ 𝑆 ) ) |