Metamath Proof Explorer


Theorem ressabs

Description: Restriction absorption law. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Assertion ressabs ( ( 𝐴𝑋𝐵𝐴 ) → ( ( 𝑊s 𝐴 ) ↾s 𝐵 ) = ( 𝑊s 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ssexg ( ( 𝐵𝐴𝐴𝑋 ) → 𝐵 ∈ V )
2 1 ancoms ( ( 𝐴𝑋𝐵𝐴 ) → 𝐵 ∈ V )
3 ressress ( ( 𝐴𝑋𝐵 ∈ V ) → ( ( 𝑊s 𝐴 ) ↾s 𝐵 ) = ( 𝑊s ( 𝐴𝐵 ) ) )
4 2 3 syldan ( ( 𝐴𝑋𝐵𝐴 ) → ( ( 𝑊s 𝐴 ) ↾s 𝐵 ) = ( 𝑊s ( 𝐴𝐵 ) ) )
5 simpr ( ( 𝐴𝑋𝐵𝐴 ) → 𝐵𝐴 )
6 sseqin2 ( 𝐵𝐴 ↔ ( 𝐴𝐵 ) = 𝐵 )
7 5 6 sylib ( ( 𝐴𝑋𝐵𝐴 ) → ( 𝐴𝐵 ) = 𝐵 )
8 7 oveq2d ( ( 𝐴𝑋𝐵𝐴 ) → ( 𝑊s ( 𝐴𝐵 ) ) = ( 𝑊s 𝐵 ) )
9 4 8 eqtrd ( ( 𝐴𝑋𝐵𝐴 ) → ( ( 𝑊s 𝐴 ) ↾s 𝐵 ) = ( 𝑊s 𝐵 ) )