Step |
Hyp |
Ref |
Expression |
1 |
|
ssexg |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ 𝑋 ) → 𝐵 ∈ V ) |
2 |
1
|
ancoms |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ V ) |
3 |
|
ressress |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ V ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |
4 |
2 3
|
syldan |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |
5 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ⊆ 𝐴 ) |
6 |
|
sseqin2 |
⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐴 ∩ 𝐵 ) = 𝐵 ) |
7 |
5 6
|
sylib |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐴 ∩ 𝐵 ) = 𝐵 ) |
8 |
7
|
oveq2d |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) = ( 𝑊 ↾s 𝐵 ) ) |
9 |
4 8
|
eqtrd |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s 𝐵 ) ) |