Metamath Proof Explorer


Theorem ressascl

Description: The injection of scalars is invariant between subalgebras and superalgebras. (Contributed by Mario Carneiro, 9-Mar-2015)

Ref Expression
Hypotheses ressascl.a 𝐴 = ( algSc ‘ 𝑊 )
ressascl.x 𝑋 = ( 𝑊s 𝑆 )
Assertion ressascl ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝐴 = ( algSc ‘ 𝑋 ) )

Proof

Step Hyp Ref Expression
1 ressascl.a 𝐴 = ( algSc ‘ 𝑊 )
2 ressascl.x 𝑋 = ( 𝑊s 𝑆 )
3 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
4 2 3 resssca ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) )
5 4 fveq2d ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑋 ) ) )
6 eqid ( ·𝑠𝑊 ) = ( ·𝑠𝑊 )
7 2 6 ressvsca ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( ·𝑠𝑊 ) = ( ·𝑠𝑋 ) )
8 eqidd ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝑥 = 𝑥 )
9 eqid ( 1r𝑊 ) = ( 1r𝑊 )
10 2 9 subrg1 ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( 1r𝑊 ) = ( 1r𝑋 ) )
11 7 8 10 oveq123d ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( 𝑥 ( ·𝑠𝑊 ) ( 1r𝑊 ) ) = ( 𝑥 ( ·𝑠𝑋 ) ( 1r𝑋 ) ) )
12 5 11 mpteq12dv ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ↦ ( 𝑥 ( ·𝑠𝑊 ) ( 1r𝑊 ) ) ) = ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ↦ ( 𝑥 ( ·𝑠𝑋 ) ( 1r𝑋 ) ) ) )
13 eqid ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) )
14 1 3 13 6 9 asclfval 𝐴 = ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ↦ ( 𝑥 ( ·𝑠𝑊 ) ( 1r𝑊 ) ) )
15 eqid ( algSc ‘ 𝑋 ) = ( algSc ‘ 𝑋 )
16 eqid ( Scalar ‘ 𝑋 ) = ( Scalar ‘ 𝑋 )
17 eqid ( Base ‘ ( Scalar ‘ 𝑋 ) ) = ( Base ‘ ( Scalar ‘ 𝑋 ) )
18 eqid ( ·𝑠𝑋 ) = ( ·𝑠𝑋 )
19 eqid ( 1r𝑋 ) = ( 1r𝑋 )
20 15 16 17 18 19 asclfval ( algSc ‘ 𝑋 ) = ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ↦ ( 𝑥 ( ·𝑠𝑋 ) ( 1r𝑋 ) ) )
21 12 14 20 3eqtr4g ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝐴 = ( algSc ‘ 𝑋 ) )