Step |
Hyp |
Ref |
Expression |
1 |
|
ressascl.a |
⊢ 𝐴 = ( algSc ‘ 𝑊 ) |
2 |
|
ressascl.x |
⊢ 𝑋 = ( 𝑊 ↾s 𝑆 ) |
3 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
4 |
2 3
|
resssca |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) ) |
5 |
4
|
fveq2d |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) |
6 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
7 |
2 6
|
ressvsca |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑋 ) ) |
8 |
|
eqidd |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝑥 = 𝑥 ) |
9 |
|
eqid |
⊢ ( 1r ‘ 𝑊 ) = ( 1r ‘ 𝑊 ) |
10 |
2 9
|
subrg1 |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( 1r ‘ 𝑊 ) = ( 1r ‘ 𝑋 ) ) |
11 |
7 8 10
|
oveq123d |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑋 ) ( 1r ‘ 𝑋 ) ) ) |
12 |
5 11
|
mpteq12dv |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ↦ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) = ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ↦ ( 𝑥 ( ·𝑠 ‘ 𝑋 ) ( 1r ‘ 𝑋 ) ) ) ) |
13 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
14 |
1 3 13 6 9
|
asclfval |
⊢ 𝐴 = ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ↦ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
15 |
|
eqid |
⊢ ( algSc ‘ 𝑋 ) = ( algSc ‘ 𝑋 ) |
16 |
|
eqid |
⊢ ( Scalar ‘ 𝑋 ) = ( Scalar ‘ 𝑋 ) |
17 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑋 ) ) = ( Base ‘ ( Scalar ‘ 𝑋 ) ) |
18 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑋 ) = ( ·𝑠 ‘ 𝑋 ) |
19 |
|
eqid |
⊢ ( 1r ‘ 𝑋 ) = ( 1r ‘ 𝑋 ) |
20 |
15 16 17 18 19
|
asclfval |
⊢ ( algSc ‘ 𝑋 ) = ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ↦ ( 𝑥 ( ·𝑠 ‘ 𝑋 ) ( 1r ‘ 𝑋 ) ) ) |
21 |
12 14 20
|
3eqtr4g |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝐴 = ( algSc ‘ 𝑋 ) ) |