| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ressascl.a | ⊢ 𝐴  =  ( algSc ‘ 𝑊 ) | 
						
							| 2 |  | ressascl.x | ⊢ 𝑋  =  ( 𝑊  ↾s  𝑆 ) | 
						
							| 3 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 4 | 2 3 | resssca | ⊢ ( 𝑆  ∈  ( SubRing ‘ 𝑊 )  →  ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑋 ) ) | 
						
							| 5 | 4 | fveq2d | ⊢ ( 𝑆  ∈  ( SubRing ‘ 𝑊 )  →  ( Base ‘ ( Scalar ‘ 𝑊 ) )  =  ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) | 
						
							| 6 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑊 )  =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 7 | 2 6 | ressvsca | ⊢ ( 𝑆  ∈  ( SubRing ‘ 𝑊 )  →  (  ·𝑠  ‘ 𝑊 )  =  (  ·𝑠  ‘ 𝑋 ) ) | 
						
							| 8 |  | eqidd | ⊢ ( 𝑆  ∈  ( SubRing ‘ 𝑊 )  →  𝑥  =  𝑥 ) | 
						
							| 9 |  | eqid | ⊢ ( 1r ‘ 𝑊 )  =  ( 1r ‘ 𝑊 ) | 
						
							| 10 | 2 9 | subrg1 | ⊢ ( 𝑆  ∈  ( SubRing ‘ 𝑊 )  →  ( 1r ‘ 𝑊 )  =  ( 1r ‘ 𝑋 ) ) | 
						
							| 11 | 7 8 10 | oveq123d | ⊢ ( 𝑆  ∈  ( SubRing ‘ 𝑊 )  →  ( 𝑥 (  ·𝑠  ‘ 𝑊 ) ( 1r ‘ 𝑊 ) )  =  ( 𝑥 (  ·𝑠  ‘ 𝑋 ) ( 1r ‘ 𝑋 ) ) ) | 
						
							| 12 | 5 11 | mpteq12dv | ⊢ ( 𝑆  ∈  ( SubRing ‘ 𝑊 )  →  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ↦  ( 𝑥 (  ·𝑠  ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) )  =  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ↦  ( 𝑥 (  ·𝑠  ‘ 𝑋 ) ( 1r ‘ 𝑋 ) ) ) ) | 
						
							| 13 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) )  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 14 | 1 3 13 6 9 | asclfval | ⊢ 𝐴  =  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ↦  ( 𝑥 (  ·𝑠  ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) | 
						
							| 15 |  | eqid | ⊢ ( algSc ‘ 𝑋 )  =  ( algSc ‘ 𝑋 ) | 
						
							| 16 |  | eqid | ⊢ ( Scalar ‘ 𝑋 )  =  ( Scalar ‘ 𝑋 ) | 
						
							| 17 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑋 ) )  =  ( Base ‘ ( Scalar ‘ 𝑋 ) ) | 
						
							| 18 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑋 )  =  (  ·𝑠  ‘ 𝑋 ) | 
						
							| 19 |  | eqid | ⊢ ( 1r ‘ 𝑋 )  =  ( 1r ‘ 𝑋 ) | 
						
							| 20 | 15 16 17 18 19 | asclfval | ⊢ ( algSc ‘ 𝑋 )  =  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ↦  ( 𝑥 (  ·𝑠  ‘ 𝑋 ) ( 1r ‘ 𝑋 ) ) ) | 
						
							| 21 | 12 14 20 | 3eqtr4g | ⊢ ( 𝑆  ∈  ( SubRing ‘ 𝑊 )  →  𝐴  =  ( algSc ‘ 𝑋 ) ) |