Step |
Hyp |
Ref |
Expression |
1 |
|
atansopn.d |
⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) |
2 |
|
atansopn.s |
⊢ 𝑆 = { 𝑦 ∈ ℂ ∣ ( 1 + ( 𝑦 ↑ 2 ) ) ∈ 𝐷 } |
3 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
4 |
|
1re |
⊢ 1 ∈ ℝ |
5 |
|
resqcl |
⊢ ( 𝑦 ∈ ℝ → ( 𝑦 ↑ 2 ) ∈ ℝ ) |
6 |
|
readdcl |
⊢ ( ( 1 ∈ ℝ ∧ ( 𝑦 ↑ 2 ) ∈ ℝ ) → ( 1 + ( 𝑦 ↑ 2 ) ) ∈ ℝ ) |
7 |
4 5 6
|
sylancr |
⊢ ( 𝑦 ∈ ℝ → ( 1 + ( 𝑦 ↑ 2 ) ) ∈ ℝ ) |
8 |
7
|
recnd |
⊢ ( 𝑦 ∈ ℝ → ( 1 + ( 𝑦 ↑ 2 ) ) ∈ ℂ ) |
9 |
4
|
a1i |
⊢ ( 𝑦 ∈ ℝ → 1 ∈ ℝ ) |
10 |
|
0lt1 |
⊢ 0 < 1 |
11 |
10
|
a1i |
⊢ ( 𝑦 ∈ ℝ → 0 < 1 ) |
12 |
|
sqge0 |
⊢ ( 𝑦 ∈ ℝ → 0 ≤ ( 𝑦 ↑ 2 ) ) |
13 |
9 5 11 12
|
addgtge0d |
⊢ ( 𝑦 ∈ ℝ → 0 < ( 1 + ( 𝑦 ↑ 2 ) ) ) |
14 |
|
0re |
⊢ 0 ∈ ℝ |
15 |
|
ltnle |
⊢ ( ( 0 ∈ ℝ ∧ ( 1 + ( 𝑦 ↑ 2 ) ) ∈ ℝ ) → ( 0 < ( 1 + ( 𝑦 ↑ 2 ) ) ↔ ¬ ( 1 + ( 𝑦 ↑ 2 ) ) ≤ 0 ) ) |
16 |
14 7 15
|
sylancr |
⊢ ( 𝑦 ∈ ℝ → ( 0 < ( 1 + ( 𝑦 ↑ 2 ) ) ↔ ¬ ( 1 + ( 𝑦 ↑ 2 ) ) ≤ 0 ) ) |
17 |
13 16
|
mpbid |
⊢ ( 𝑦 ∈ ℝ → ¬ ( 1 + ( 𝑦 ↑ 2 ) ) ≤ 0 ) |
18 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
19 |
|
elioc2 |
⊢ ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ ) → ( ( 1 + ( 𝑦 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ↔ ( ( 1 + ( 𝑦 ↑ 2 ) ) ∈ ℝ ∧ -∞ < ( 1 + ( 𝑦 ↑ 2 ) ) ∧ ( 1 + ( 𝑦 ↑ 2 ) ) ≤ 0 ) ) ) |
20 |
18 14 19
|
mp2an |
⊢ ( ( 1 + ( 𝑦 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ↔ ( ( 1 + ( 𝑦 ↑ 2 ) ) ∈ ℝ ∧ -∞ < ( 1 + ( 𝑦 ↑ 2 ) ) ∧ ( 1 + ( 𝑦 ↑ 2 ) ) ≤ 0 ) ) |
21 |
20
|
simp3bi |
⊢ ( ( 1 + ( 𝑦 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) → ( 1 + ( 𝑦 ↑ 2 ) ) ≤ 0 ) |
22 |
17 21
|
nsyl |
⊢ ( 𝑦 ∈ ℝ → ¬ ( 1 + ( 𝑦 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) |
23 |
8 22
|
eldifd |
⊢ ( 𝑦 ∈ ℝ → ( 1 + ( 𝑦 ↑ 2 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ) |
24 |
23 1
|
eleqtrrdi |
⊢ ( 𝑦 ∈ ℝ → ( 1 + ( 𝑦 ↑ 2 ) ) ∈ 𝐷 ) |
25 |
24
|
rgen |
⊢ ∀ 𝑦 ∈ ℝ ( 1 + ( 𝑦 ↑ 2 ) ) ∈ 𝐷 |
26 |
|
ssrab |
⊢ ( ℝ ⊆ { 𝑦 ∈ ℂ ∣ ( 1 + ( 𝑦 ↑ 2 ) ) ∈ 𝐷 } ↔ ( ℝ ⊆ ℂ ∧ ∀ 𝑦 ∈ ℝ ( 1 + ( 𝑦 ↑ 2 ) ) ∈ 𝐷 ) ) |
27 |
3 25 26
|
mpbir2an |
⊢ ℝ ⊆ { 𝑦 ∈ ℂ ∣ ( 1 + ( 𝑦 ↑ 2 ) ) ∈ 𝐷 } |
28 |
27 2
|
sseqtrri |
⊢ ℝ ⊆ 𝑆 |