Step |
Hyp |
Ref |
Expression |
1 |
|
ressbas.r |
⊢ 𝑅 = ( 𝑊 ↾s 𝐴 ) |
2 |
|
ressbas.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
3 |
|
simp1 |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → 𝐵 ⊆ 𝐴 ) |
4 |
|
sseqin2 |
⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐴 ∩ 𝐵 ) = 𝐵 ) |
5 |
3 4
|
sylib |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∩ 𝐵 ) = 𝐵 ) |
6 |
1 2
|
ressid2 |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → 𝑅 = 𝑊 ) |
7 |
6
|
fveq2d |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑊 ) ) |
8 |
2 5 7
|
3eqtr4a |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∩ 𝐵 ) = ( Base ‘ 𝑅 ) ) |
9 |
8
|
3expib |
⊢ ( 𝐵 ⊆ 𝐴 → ( ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∩ 𝐵 ) = ( Base ‘ 𝑅 ) ) ) |
10 |
|
simp2 |
⊢ ( ( ¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → 𝑊 ∈ V ) |
11 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
12 |
11
|
inex2 |
⊢ ( 𝐴 ∩ 𝐵 ) ∈ V |
13 |
|
baseid |
⊢ Base = Slot ( Base ‘ ndx ) |
14 |
13
|
setsid |
⊢ ( ( 𝑊 ∈ V ∧ ( 𝐴 ∩ 𝐵 ) ∈ V ) → ( 𝐴 ∩ 𝐵 ) = ( Base ‘ ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) ) ) |
15 |
10 12 14
|
sylancl |
⊢ ( ( ¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∩ 𝐵 ) = ( Base ‘ ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) ) ) |
16 |
1 2
|
ressval2 |
⊢ ( ( ¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → 𝑅 = ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) ) |
17 |
16
|
fveq2d |
⊢ ( ( ¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) ) ) |
18 |
15 17
|
eqtr4d |
⊢ ( ( ¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∩ 𝐵 ) = ( Base ‘ 𝑅 ) ) |
19 |
18
|
3expib |
⊢ ( ¬ 𝐵 ⊆ 𝐴 → ( ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∩ 𝐵 ) = ( Base ‘ 𝑅 ) ) ) |
20 |
9 19
|
pm2.61i |
⊢ ( ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∩ 𝐵 ) = ( Base ‘ 𝑅 ) ) |
21 |
|
0fv |
⊢ ( ∅ ‘ ( Base ‘ ndx ) ) = ∅ |
22 |
|
0ex |
⊢ ∅ ∈ V |
23 |
22 13
|
strfvn |
⊢ ( Base ‘ ∅ ) = ( ∅ ‘ ( Base ‘ ndx ) ) |
24 |
|
in0 |
⊢ ( 𝐴 ∩ ∅ ) = ∅ |
25 |
21 23 24
|
3eqtr4ri |
⊢ ( 𝐴 ∩ ∅ ) = ( Base ‘ ∅ ) |
26 |
|
fvprc |
⊢ ( ¬ 𝑊 ∈ V → ( Base ‘ 𝑊 ) = ∅ ) |
27 |
2 26
|
eqtrid |
⊢ ( ¬ 𝑊 ∈ V → 𝐵 = ∅ ) |
28 |
27
|
ineq2d |
⊢ ( ¬ 𝑊 ∈ V → ( 𝐴 ∩ 𝐵 ) = ( 𝐴 ∩ ∅ ) ) |
29 |
|
reldmress |
⊢ Rel dom ↾s |
30 |
29
|
ovprc1 |
⊢ ( ¬ 𝑊 ∈ V → ( 𝑊 ↾s 𝐴 ) = ∅ ) |
31 |
1 30
|
eqtrid |
⊢ ( ¬ 𝑊 ∈ V → 𝑅 = ∅ ) |
32 |
31
|
fveq2d |
⊢ ( ¬ 𝑊 ∈ V → ( Base ‘ 𝑅 ) = ( Base ‘ ∅ ) ) |
33 |
25 28 32
|
3eqtr4a |
⊢ ( ¬ 𝑊 ∈ V → ( 𝐴 ∩ 𝐵 ) = ( Base ‘ 𝑅 ) ) |
34 |
33
|
adantr |
⊢ ( ( ¬ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∩ 𝐵 ) = ( Base ‘ 𝑅 ) ) |
35 |
20 34
|
pm2.61ian |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∩ 𝐵 ) = ( Base ‘ 𝑅 ) ) |