Metamath Proof Explorer


Theorem ressbas2

Description: Base set of a structure restriction. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypotheses ressbas.r 𝑅 = ( 𝑊s 𝐴 )
ressbas.b 𝐵 = ( Base ‘ 𝑊 )
Assertion ressbas2 ( 𝐴𝐵𝐴 = ( Base ‘ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 ressbas.r 𝑅 = ( 𝑊s 𝐴 )
2 ressbas.b 𝐵 = ( Base ‘ 𝑊 )
3 df-ss ( 𝐴𝐵 ↔ ( 𝐴𝐵 ) = 𝐴 )
4 3 biimpi ( 𝐴𝐵 → ( 𝐴𝐵 ) = 𝐴 )
5 2 fvexi 𝐵 ∈ V
6 5 ssex ( 𝐴𝐵𝐴 ∈ V )
7 1 2 ressbas ( 𝐴 ∈ V → ( 𝐴𝐵 ) = ( Base ‘ 𝑅 ) )
8 6 7 syl ( 𝐴𝐵 → ( 𝐴𝐵 ) = ( Base ‘ 𝑅 ) )
9 4 8 eqtr3d ( 𝐴𝐵𝐴 = ( Base ‘ 𝑅 ) )