Description: Base set of a structure restriction. (Contributed by Mario Carneiro, 2-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ressbas.r | ⊢ 𝑅 = ( 𝑊 ↾s 𝐴 ) | |
ressbas.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | ||
Assertion | ressbas2 | ⊢ ( 𝐴 ⊆ 𝐵 → 𝐴 = ( Base ‘ 𝑅 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressbas.r | ⊢ 𝑅 = ( 𝑊 ↾s 𝐴 ) | |
2 | ressbas.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
3 | df-ss | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∩ 𝐵 ) = 𝐴 ) | |
4 | 3 | biimpi | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∩ 𝐵 ) = 𝐴 ) |
5 | 2 | fvexi | ⊢ 𝐵 ∈ V |
6 | 5 | ssex | ⊢ ( 𝐴 ⊆ 𝐵 → 𝐴 ∈ V ) |
7 | 1 2 | ressbas | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∩ 𝐵 ) = ( Base ‘ 𝑅 ) ) |
8 | 6 7 | syl | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∩ 𝐵 ) = ( Base ‘ 𝑅 ) ) |
9 | 4 8 | eqtr3d | ⊢ ( 𝐴 ⊆ 𝐵 → 𝐴 = ( Base ‘ 𝑅 ) ) |