Description: The base set of a restriction to A is a subset of A . (Contributed by SN, 10-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ressbasss2.r | ⊢ 𝑅 = ( 𝑊 ↾s 𝐴 ) | |
Assertion | ressbasss2 | ⊢ ( Base ‘ 𝑅 ) ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressbasss2.r | ⊢ 𝑅 = ( 𝑊 ↾s 𝐴 ) | |
2 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
3 | 1 2 | ressbasssg | ⊢ ( Base ‘ 𝑅 ) ⊆ ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) |
4 | inss1 | ⊢ ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ⊆ 𝐴 | |
5 | 3 4 | sstri | ⊢ ( Base ‘ 𝑅 ) ⊆ 𝐴 |