| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ressbas.r |
⊢ 𝑅 = ( 𝑊 ↾s 𝐴 ) |
| 2 |
|
ressbas.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
| 3 |
1 2
|
ressbas |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∩ 𝐵 ) = ( Base ‘ 𝑅 ) ) |
| 4 |
|
ssid |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐴 ∩ 𝐵 ) |
| 5 |
3 4
|
eqsstrrdi |
⊢ ( 𝐴 ∈ V → ( Base ‘ 𝑅 ) ⊆ ( 𝐴 ∩ 𝐵 ) ) |
| 6 |
|
reldmress |
⊢ Rel dom ↾s |
| 7 |
6
|
ovprc2 |
⊢ ( ¬ 𝐴 ∈ V → ( 𝑊 ↾s 𝐴 ) = ∅ ) |
| 8 |
1 7
|
eqtrid |
⊢ ( ¬ 𝐴 ∈ V → 𝑅 = ∅ ) |
| 9 |
8
|
fveq2d |
⊢ ( ¬ 𝐴 ∈ V → ( Base ‘ 𝑅 ) = ( Base ‘ ∅ ) ) |
| 10 |
|
base0 |
⊢ ∅ = ( Base ‘ ∅ ) |
| 11 |
|
0ss |
⊢ ∅ ⊆ ( 𝐴 ∩ 𝐵 ) |
| 12 |
10 11
|
eqsstrri |
⊢ ( Base ‘ ∅ ) ⊆ ( 𝐴 ∩ 𝐵 ) |
| 13 |
9 12
|
eqsstrdi |
⊢ ( ¬ 𝐴 ∈ V → ( Base ‘ 𝑅 ) ⊆ ( 𝐴 ∩ 𝐵 ) ) |
| 14 |
5 13
|
pm2.61i |
⊢ ( Base ‘ 𝑅 ) ⊆ ( 𝐴 ∩ 𝐵 ) |