Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
2 |
1
|
ressinbas |
⊢ ( 𝑆 ∈ 𝑉 → ( 𝐶 ↾s 𝑆 ) = ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) |
3 |
2
|
adantl |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( 𝐶 ↾s 𝑆 ) = ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) |
4 |
|
eqid |
⊢ ( 𝐶 ↾cat ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) = ( 𝐶 ↾cat ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) |
5 |
|
eqid |
⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) |
6 |
|
simpl |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → 𝐶 ∈ Cat ) |
7 |
|
inss2 |
⊢ ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ⊆ ( Base ‘ 𝐶 ) |
8 |
7
|
a1i |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ⊆ ( Base ‘ 𝐶 ) ) |
9 |
1 5 6 8
|
fullsubc |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ∈ ( Subcat ‘ 𝐶 ) ) |
10 |
4 9
|
subccat |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( 𝐶 ↾cat ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) ∈ Cat ) |
11 |
|
eqid |
⊢ ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) = ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) |
12 |
1 5 6 8 11 4
|
fullresc |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( ( Homf ‘ ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) = ( Homf ‘ ( 𝐶 ↾cat ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) ) ∧ ( compf ‘ ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) = ( compf ‘ ( 𝐶 ↾cat ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) ) ) ) |
13 |
12
|
simpld |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( Homf ‘ ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) = ( Homf ‘ ( 𝐶 ↾cat ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) ) ) |
14 |
12
|
simprd |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( compf ‘ ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) = ( compf ‘ ( 𝐶 ↾cat ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) ) ) |
15 |
|
ovexd |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ∈ V ) |
16 |
13 14 15 10
|
catpropd |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ∈ Cat ↔ ( 𝐶 ↾cat ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) ∈ Cat ) ) |
17 |
10 16
|
mpbird |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ∈ Cat ) |
18 |
3 17
|
eqeltrd |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( 𝐶 ↾s 𝑆 ) ∈ Cat ) |