Step |
Hyp |
Ref |
Expression |
1 |
|
resscatc.c |
⊢ 𝐶 = ( CatCat ‘ 𝑈 ) |
2 |
|
resscatc.d |
⊢ 𝐷 = ( CatCat ‘ 𝑉 ) |
3 |
|
resscatc.1 |
⊢ ( 𝜑 → 𝑈 ∈ 𝑊 ) |
4 |
|
resscatc.2 |
⊢ ( 𝜑 → 𝑉 ⊆ 𝑈 ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
6 |
3 4
|
ssexd |
⊢ ( 𝜑 → 𝑉 ∈ V ) |
7 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ) ) → 𝑉 ∈ V ) |
8 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
9 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ) ) → 𝑥 ∈ ( 𝑉 ∩ Cat ) ) |
10 |
2 5 6
|
catcbas |
⊢ ( 𝜑 → ( Base ‘ 𝐷 ) = ( 𝑉 ∩ Cat ) ) |
11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ) ) → ( Base ‘ 𝐷 ) = ( 𝑉 ∩ Cat ) ) |
12 |
9 11
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ) ) → 𝑥 ∈ ( Base ‘ 𝐷 ) ) |
13 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ) ) → 𝑦 ∈ ( 𝑉 ∩ Cat ) ) |
14 |
13 11
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ) ) → 𝑦 ∈ ( Base ‘ 𝐷 ) ) |
15 |
2 5 7 8 12 14
|
catchom |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ) ) → ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) = ( 𝑥 Func 𝑦 ) ) |
16 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
17 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ) ) → 𝑈 ∈ 𝑊 ) |
18 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
19 |
|
inass |
⊢ ( ( 𝑉 ∩ 𝑈 ) ∩ Cat ) = ( 𝑉 ∩ ( 𝑈 ∩ Cat ) ) |
20 |
1 16 3
|
catcbas |
⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( 𝑈 ∩ Cat ) ) |
21 |
20
|
ineq2d |
⊢ ( 𝜑 → ( 𝑉 ∩ ( Base ‘ 𝐶 ) ) = ( 𝑉 ∩ ( 𝑈 ∩ Cat ) ) ) |
22 |
19 21
|
eqtr4id |
⊢ ( 𝜑 → ( ( 𝑉 ∩ 𝑈 ) ∩ Cat ) = ( 𝑉 ∩ ( Base ‘ 𝐶 ) ) ) |
23 |
|
df-ss |
⊢ ( 𝑉 ⊆ 𝑈 ↔ ( 𝑉 ∩ 𝑈 ) = 𝑉 ) |
24 |
4 23
|
sylib |
⊢ ( 𝜑 → ( 𝑉 ∩ 𝑈 ) = 𝑉 ) |
25 |
24
|
ineq1d |
⊢ ( 𝜑 → ( ( 𝑉 ∩ 𝑈 ) ∩ Cat ) = ( 𝑉 ∩ Cat ) ) |
26 |
|
eqid |
⊢ ( 𝐶 ↾s 𝑉 ) = ( 𝐶 ↾s 𝑉 ) |
27 |
26 16
|
ressbas |
⊢ ( 𝑉 ∈ V → ( 𝑉 ∩ ( Base ‘ 𝐶 ) ) = ( Base ‘ ( 𝐶 ↾s 𝑉 ) ) ) |
28 |
6 27
|
syl |
⊢ ( 𝜑 → ( 𝑉 ∩ ( Base ‘ 𝐶 ) ) = ( Base ‘ ( 𝐶 ↾s 𝑉 ) ) ) |
29 |
22 25 28
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝑉 ∩ Cat ) = ( Base ‘ ( 𝐶 ↾s 𝑉 ) ) ) |
30 |
26 16
|
ressbasss |
⊢ ( Base ‘ ( 𝐶 ↾s 𝑉 ) ) ⊆ ( Base ‘ 𝐶 ) |
31 |
29 30
|
eqsstrdi |
⊢ ( 𝜑 → ( 𝑉 ∩ Cat ) ⊆ ( Base ‘ 𝐶 ) ) |
32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ) ) → ( 𝑉 ∩ Cat ) ⊆ ( Base ‘ 𝐶 ) ) |
33 |
32 9
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
34 |
32 13
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
35 |
1 16 17 18 33 34
|
catchom |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ) ) → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) = ( 𝑥 Func 𝑦 ) ) |
36 |
26 18
|
resshom |
⊢ ( 𝑉 ∈ V → ( Hom ‘ 𝐶 ) = ( Hom ‘ ( 𝐶 ↾s 𝑉 ) ) ) |
37 |
6 36
|
syl |
⊢ ( 𝜑 → ( Hom ‘ 𝐶 ) = ( Hom ‘ ( 𝐶 ↾s 𝑉 ) ) ) |
38 |
37
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ) ) → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) = ( 𝑥 ( Hom ‘ ( 𝐶 ↾s 𝑉 ) ) 𝑦 ) ) |
39 |
15 35 38
|
3eqtr2rd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ) ) → ( 𝑥 ( Hom ‘ ( 𝐶 ↾s 𝑉 ) ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) |
40 |
39
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝑉 ∩ Cat ) ∀ 𝑦 ∈ ( 𝑉 ∩ Cat ) ( 𝑥 ( Hom ‘ ( 𝐶 ↾s 𝑉 ) ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) |
41 |
|
eqid |
⊢ ( Hom ‘ ( 𝐶 ↾s 𝑉 ) ) = ( Hom ‘ ( 𝐶 ↾s 𝑉 ) ) |
42 |
10
|
eqcomd |
⊢ ( 𝜑 → ( 𝑉 ∩ Cat ) = ( Base ‘ 𝐷 ) ) |
43 |
41 8 29 42
|
homfeq |
⊢ ( 𝜑 → ( ( Homf ‘ ( 𝐶 ↾s 𝑉 ) ) = ( Homf ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ( 𝑉 ∩ Cat ) ∀ 𝑦 ∈ ( 𝑉 ∩ Cat ) ( 𝑥 ( Hom ‘ ( 𝐶 ↾s 𝑉 ) ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) ) |
44 |
40 43
|
mpbird |
⊢ ( 𝜑 → ( Homf ‘ ( 𝐶 ↾s 𝑉 ) ) = ( Homf ‘ 𝐷 ) ) |
45 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑉 ∈ V ) |
46 |
|
eqid |
⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) |
47 |
|
simplr1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑥 ∈ ( 𝑉 ∩ Cat ) ) |
48 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → ( Base ‘ 𝐷 ) = ( 𝑉 ∩ Cat ) ) |
49 |
47 48
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐷 ) ) |
50 |
|
simplr2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑦 ∈ ( 𝑉 ∩ Cat ) ) |
51 |
50 48
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐷 ) ) |
52 |
|
simplr3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑧 ∈ ( 𝑉 ∩ Cat ) ) |
53 |
52 48
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐷 ) ) |
54 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) |
55 |
2 5 45 8 49 51
|
catchom |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) = ( 𝑥 Func 𝑦 ) ) |
56 |
54 55
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑓 ∈ ( 𝑥 Func 𝑦 ) ) |
57 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) |
58 |
2 5 45 8 51 53
|
catchom |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) = ( 𝑦 Func 𝑧 ) ) |
59 |
57 58
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑔 ∈ ( 𝑦 Func 𝑧 ) ) |
60 |
2 5 45 46 49 51 53 56 59
|
catcco |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) = ( 𝑔 ∘func 𝑓 ) ) |
61 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑈 ∈ 𝑊 ) |
62 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
63 |
31
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → ( 𝑉 ∩ Cat ) ⊆ ( Base ‘ 𝐶 ) ) |
64 |
63 47
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
65 |
63 50
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
66 |
63 52
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) |
67 |
1 16 61 62 64 65 66 56 59
|
catcco |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( 𝑔 ∘func 𝑓 ) ) |
68 |
26 62
|
ressco |
⊢ ( 𝑉 ∈ V → ( comp ‘ 𝐶 ) = ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) ) |
69 |
6 68
|
syl |
⊢ ( 𝜑 → ( comp ‘ 𝐶 ) = ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) ) |
70 |
69
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → ( comp ‘ 𝐶 ) = ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) ) |
71 |
70
|
oveqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) = ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) 𝑧 ) ) |
72 |
71
|
oveqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) 𝑧 ) 𝑓 ) ) |
73 |
60 67 72
|
3eqtr2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) 𝑧 ) 𝑓 ) ) |
74 |
73
|
ralrimivva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) → ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) 𝑧 ) 𝑓 ) ) |
75 |
74
|
ralrimivvva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝑉 ∩ Cat ) ∀ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∀ 𝑧 ∈ ( 𝑉 ∩ Cat ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) 𝑧 ) 𝑓 ) ) |
76 |
|
eqid |
⊢ ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) = ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) |
77 |
44
|
eqcomd |
⊢ ( 𝜑 → ( Homf ‘ 𝐷 ) = ( Homf ‘ ( 𝐶 ↾s 𝑉 ) ) ) |
78 |
46 76 8 42 29 77
|
comfeq |
⊢ ( 𝜑 → ( ( compf ‘ 𝐷 ) = ( compf ‘ ( 𝐶 ↾s 𝑉 ) ) ↔ ∀ 𝑥 ∈ ( 𝑉 ∩ Cat ) ∀ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∀ 𝑧 ∈ ( 𝑉 ∩ Cat ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) 𝑧 ) 𝑓 ) ) ) |
79 |
75 78
|
mpbird |
⊢ ( 𝜑 → ( compf ‘ 𝐷 ) = ( compf ‘ ( 𝐶 ↾s 𝑉 ) ) ) |
80 |
79
|
eqcomd |
⊢ ( 𝜑 → ( compf ‘ ( 𝐶 ↾s 𝑉 ) ) = ( compf ‘ 𝐷 ) ) |
81 |
44 80
|
jca |
⊢ ( 𝜑 → ( ( Homf ‘ ( 𝐶 ↾s 𝑉 ) ) = ( Homf ‘ 𝐷 ) ∧ ( compf ‘ ( 𝐶 ↾s 𝑉 ) ) = ( compf ‘ 𝐷 ) ) ) |