Step |
Hyp |
Ref |
Expression |
1 |
|
resscdrg.1 |
⊢ 𝐹 = ( ℂfld ↾s 𝐾 ) |
2 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
3 |
2
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
4 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
5 |
|
qssre |
⊢ ℚ ⊆ ℝ |
6 |
|
unicntop |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
7 |
2
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
8 |
6 7
|
restcls |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ℝ ⊆ ℂ ∧ ℚ ⊆ ℝ ) → ( ( cls ‘ ( topGen ‘ ran (,) ) ) ‘ ℚ ) = ( ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℚ ) ∩ ℝ ) ) |
9 |
3 4 5 8
|
mp3an |
⊢ ( ( cls ‘ ( topGen ‘ ran (,) ) ) ‘ ℚ ) = ( ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℚ ) ∩ ℝ ) |
10 |
|
qdensere |
⊢ ( ( cls ‘ ( topGen ‘ ran (,) ) ) ‘ ℚ ) = ℝ |
11 |
9 10
|
eqtr3i |
⊢ ( ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℚ ) ∩ ℝ ) = ℝ |
12 |
|
sseqin2 |
⊢ ( ℝ ⊆ ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℚ ) ↔ ( ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℚ ) ∩ ℝ ) = ℝ ) |
13 |
11 12
|
mpbir |
⊢ ℝ ⊆ ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℚ ) |
14 |
|
simp3 |
⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp ) → 𝐹 ∈ CMetSp ) |
15 |
|
cncms |
⊢ ℂfld ∈ CMetSp |
16 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
17 |
16
|
subrgss |
⊢ ( 𝐾 ∈ ( SubRing ‘ ℂfld ) → 𝐾 ⊆ ℂ ) |
18 |
17
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp ) → 𝐾 ⊆ ℂ ) |
19 |
1 16 2
|
cmsss |
⊢ ( ( ℂfld ∈ CMetSp ∧ 𝐾 ⊆ ℂ ) → ( 𝐹 ∈ CMetSp ↔ 𝐾 ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) ) |
20 |
15 18 19
|
sylancr |
⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp ) → ( 𝐹 ∈ CMetSp ↔ 𝐾 ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) ) |
21 |
14 20
|
mpbid |
⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp ) → 𝐾 ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) |
22 |
1
|
eleq1i |
⊢ ( 𝐹 ∈ DivRing ↔ ( ℂfld ↾s 𝐾 ) ∈ DivRing ) |
23 |
|
qsssubdrg |
⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝐾 ) ∈ DivRing ) → ℚ ⊆ 𝐾 ) |
24 |
22 23
|
sylan2b |
⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ 𝐹 ∈ DivRing ) → ℚ ⊆ 𝐾 ) |
25 |
24
|
3adant3 |
⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp ) → ℚ ⊆ 𝐾 ) |
26 |
6
|
clsss2 |
⊢ ( ( 𝐾 ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ∧ ℚ ⊆ 𝐾 ) → ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℚ ) ⊆ 𝐾 ) |
27 |
21 25 26
|
syl2anc |
⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp ) → ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℚ ) ⊆ 𝐾 ) |
28 |
13 27
|
sstrid |
⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp ) → ℝ ⊆ 𝐾 ) |