Step |
Hyp |
Ref |
Expression |
1 |
|
resscntz.p |
⊢ 𝐻 = ( 𝐺 ↾s 𝐴 ) |
2 |
|
resscntz.z |
⊢ 𝑍 = ( Cntz ‘ 𝐺 ) |
3 |
|
resscntz.y |
⊢ 𝑌 = ( Cntz ‘ 𝐻 ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
5 |
4 3
|
cntzrcl |
⊢ ( 𝑥 ∈ ( 𝑌 ‘ 𝑆 ) → ( 𝐻 ∈ V ∧ 𝑆 ⊆ ( Base ‘ 𝐻 ) ) ) |
6 |
5
|
simprd |
⊢ ( 𝑥 ∈ ( 𝑌 ‘ 𝑆 ) → 𝑆 ⊆ ( Base ‘ 𝐻 ) ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
8 |
1 7
|
ressbasss |
⊢ ( Base ‘ 𝐻 ) ⊆ ( Base ‘ 𝐺 ) |
9 |
6 8
|
sstrdi |
⊢ ( 𝑥 ∈ ( 𝑌 ‘ 𝑆 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
10 |
9
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴 ) → ( 𝑥 ∈ ( 𝑌 ‘ 𝑆 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) ) |
11 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( ( 𝑍 ‘ 𝑆 ) ∩ 𝐴 ) → 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) |
12 |
7 2
|
cntzrcl |
⊢ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) → ( 𝐺 ∈ V ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) ) |
13 |
12
|
simprd |
⊢ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
14 |
11 13
|
syl |
⊢ ( 𝑥 ∈ ( ( 𝑍 ‘ 𝑆 ) ∩ 𝐴 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
15 |
14
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴 ) → ( 𝑥 ∈ ( ( 𝑍 ‘ 𝑆 ) ∩ 𝐴 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) ) |
16 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝐴 ∩ ( Base ‘ 𝐺 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ) |
17 |
1 7
|
ressbas |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∩ ( Base ‘ 𝐺 ) ) = ( Base ‘ 𝐻 ) ) |
18 |
17
|
eleq2d |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( 𝐴 ∩ ( Base ‘ 𝐺 ) ) ↔ 𝑥 ∈ ( Base ‘ 𝐻 ) ) ) |
19 |
16 18
|
bitr3id |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ↔ 𝑥 ∈ ( Base ‘ 𝐻 ) ) ) |
20 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
21 |
1 20
|
ressplusg |
⊢ ( 𝐴 ∈ 𝑉 → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
22 |
21
|
oveqd |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) |
23 |
21
|
oveqd |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) |
24 |
22 23
|
eqeq12d |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ↔ ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ) |
25 |
24
|
ralbidv |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ↔ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ) |
26 |
19 25
|
anbi12d |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ) ) |
27 |
26
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴 ) ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ) ) |
28 |
|
anass |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) |
29 |
27 28
|
bitr3di |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴 ) ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) ) |
30 |
|
ssin |
⊢ ( ( 𝑆 ⊆ 𝐴 ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) ↔ 𝑆 ⊆ ( 𝐴 ∩ ( Base ‘ 𝐺 ) ) ) |
31 |
17
|
sseq2d |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑆 ⊆ ( 𝐴 ∩ ( Base ‘ 𝐺 ) ) ↔ 𝑆 ⊆ ( Base ‘ 𝐻 ) ) ) |
32 |
30 31
|
syl5bb |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑆 ⊆ 𝐴 ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) ↔ 𝑆 ⊆ ( Base ‘ 𝐻 ) ) ) |
33 |
32
|
biimpd |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑆 ⊆ 𝐴 ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → 𝑆 ⊆ ( Base ‘ 𝐻 ) ) ) |
34 |
33
|
impl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴 ) ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → 𝑆 ⊆ ( Base ‘ 𝐻 ) ) |
35 |
|
eqid |
⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) |
36 |
4 35 3
|
elcntz |
⊢ ( 𝑆 ⊆ ( Base ‘ 𝐻 ) → ( 𝑥 ∈ ( 𝑌 ‘ 𝑆 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ) ) |
37 |
34 36
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴 ) ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑥 ∈ ( 𝑌 ‘ 𝑆 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ) ) |
38 |
|
elin |
⊢ ( 𝑥 ∈ ( ( 𝑍 ‘ 𝑆 ) ∩ 𝐴 ) ↔ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑥 ∈ 𝐴 ) ) |
39 |
38
|
biancomi |
⊢ ( 𝑥 ∈ ( ( 𝑍 ‘ 𝑆 ) ∩ 𝐴 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ) |
40 |
7 20 2
|
elcntz |
⊢ ( 𝑆 ⊆ ( Base ‘ 𝐺 ) → ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) |
41 |
40
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴 ) ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) |
42 |
41
|
anbi2d |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴 ) ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) ) |
43 |
39 42
|
syl5bb |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴 ) ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑥 ∈ ( ( 𝑍 ‘ 𝑆 ) ∩ 𝐴 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) ) |
44 |
29 37 43
|
3bitr4d |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴 ) ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑥 ∈ ( 𝑌 ‘ 𝑆 ) ↔ 𝑥 ∈ ( ( 𝑍 ‘ 𝑆 ) ∩ 𝐴 ) ) ) |
45 |
44
|
ex |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴 ) → ( 𝑆 ⊆ ( Base ‘ 𝐺 ) → ( 𝑥 ∈ ( 𝑌 ‘ 𝑆 ) ↔ 𝑥 ∈ ( ( 𝑍 ‘ 𝑆 ) ∩ 𝐴 ) ) ) ) |
46 |
10 15 45
|
pm5.21ndd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴 ) → ( 𝑥 ∈ ( 𝑌 ‘ 𝑆 ) ↔ 𝑥 ∈ ( ( 𝑍 ‘ 𝑆 ) ∩ 𝐴 ) ) ) |
47 |
46
|
eqrdv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴 ) → ( 𝑌 ‘ 𝑆 ) = ( ( 𝑍 ‘ 𝑆 ) ∩ 𝐴 ) ) |