Step |
Hyp |
Ref |
Expression |
1 |
|
ressdeg1.h |
⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) |
2 |
|
ressdeg1.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
3 |
|
ressdeg1.u |
⊢ 𝑈 = ( Poly1 ‘ 𝐻 ) |
4 |
|
ressdeg1.b |
⊢ 𝐵 = ( Base ‘ 𝑈 ) |
5 |
|
ressdeg1.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝐵 ) |
6 |
|
ressdeg1.t |
⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) |
7 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
8 |
1 7
|
subrg0 |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝐻 ) ) |
9 |
6 8
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝐻 ) ) |
10 |
9
|
oveq2d |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝑃 ) supp ( 0g ‘ 𝑅 ) ) = ( ( coe1 ‘ 𝑃 ) supp ( 0g ‘ 𝐻 ) ) ) |
11 |
10
|
supeq1d |
⊢ ( 𝜑 → sup ( ( ( coe1 ‘ 𝑃 ) supp ( 0g ‘ 𝑅 ) ) , ℝ* , < ) = sup ( ( ( coe1 ‘ 𝑃 ) supp ( 0g ‘ 𝐻 ) ) , ℝ* , < ) ) |
12 |
|
eqid |
⊢ ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ 𝑅 ) |
13 |
|
eqid |
⊢ ( PwSer1 ‘ 𝐻 ) = ( PwSer1 ‘ 𝐻 ) |
14 |
|
eqid |
⊢ ( Base ‘ ( PwSer1 ‘ 𝐻 ) ) = ( Base ‘ ( PwSer1 ‘ 𝐻 ) ) |
15 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( Poly1 ‘ 𝑅 ) ) |
16 |
12 1 3 4 6 13 14 15
|
ressply1bas2 |
⊢ ( 𝜑 → 𝐵 = ( ( Base ‘ ( PwSer1 ‘ 𝐻 ) ) ∩ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) ) |
17 |
5 16
|
eleqtrd |
⊢ ( 𝜑 → 𝑃 ∈ ( ( Base ‘ ( PwSer1 ‘ 𝐻 ) ) ∩ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) ) |
18 |
17
|
elin2d |
⊢ ( 𝜑 → 𝑃 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
19 |
|
eqid |
⊢ ( coe1 ‘ 𝑃 ) = ( coe1 ‘ 𝑃 ) |
20 |
2 12 15 7 19
|
deg1val |
⊢ ( 𝑃 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) → ( 𝐷 ‘ 𝑃 ) = sup ( ( ( coe1 ‘ 𝑃 ) supp ( 0g ‘ 𝑅 ) ) , ℝ* , < ) ) |
21 |
18 20
|
syl |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑃 ) = sup ( ( ( coe1 ‘ 𝑃 ) supp ( 0g ‘ 𝑅 ) ) , ℝ* , < ) ) |
22 |
|
eqid |
⊢ ( deg1 ‘ 𝐻 ) = ( deg1 ‘ 𝐻 ) |
23 |
|
eqid |
⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) |
24 |
22 3 4 23 19
|
deg1val |
⊢ ( 𝑃 ∈ 𝐵 → ( ( deg1 ‘ 𝐻 ) ‘ 𝑃 ) = sup ( ( ( coe1 ‘ 𝑃 ) supp ( 0g ‘ 𝐻 ) ) , ℝ* , < ) ) |
25 |
5 24
|
syl |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐻 ) ‘ 𝑃 ) = sup ( ( ( coe1 ‘ 𝑃 ) supp ( 0g ‘ 𝐻 ) ) , ℝ* , < ) ) |
26 |
11 21 25
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑃 ) = ( ( deg1 ‘ 𝐻 ) ‘ 𝑃 ) ) |