Metamath Proof Explorer


Theorem ressdeg1

Description: The degree of a univariate polynomial in a structure restriction. (Contributed by Thierry Arnoux, 20-Jan-2025)

Ref Expression
Hypotheses ressdeg1.h 𝐻 = ( 𝑅s 𝑇 )
ressdeg1.d 𝐷 = ( deg1𝑅 )
ressdeg1.u 𝑈 = ( Poly1𝐻 )
ressdeg1.b 𝐵 = ( Base ‘ 𝑈 )
ressdeg1.p ( 𝜑𝑃𝐵 )
ressdeg1.t ( 𝜑𝑇 ∈ ( SubRing ‘ 𝑅 ) )
Assertion ressdeg1 ( 𝜑 → ( 𝐷𝑃 ) = ( ( deg1𝐻 ) ‘ 𝑃 ) )

Proof

Step Hyp Ref Expression
1 ressdeg1.h 𝐻 = ( 𝑅s 𝑇 )
2 ressdeg1.d 𝐷 = ( deg1𝑅 )
3 ressdeg1.u 𝑈 = ( Poly1𝐻 )
4 ressdeg1.b 𝐵 = ( Base ‘ 𝑈 )
5 ressdeg1.p ( 𝜑𝑃𝐵 )
6 ressdeg1.t ( 𝜑𝑇 ∈ ( SubRing ‘ 𝑅 ) )
7 eqid ( 0g𝑅 ) = ( 0g𝑅 )
8 1 7 subrg0 ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → ( 0g𝑅 ) = ( 0g𝐻 ) )
9 6 8 syl ( 𝜑 → ( 0g𝑅 ) = ( 0g𝐻 ) )
10 9 oveq2d ( 𝜑 → ( ( coe1𝑃 ) supp ( 0g𝑅 ) ) = ( ( coe1𝑃 ) supp ( 0g𝐻 ) ) )
11 10 supeq1d ( 𝜑 → sup ( ( ( coe1𝑃 ) supp ( 0g𝑅 ) ) , ℝ* , < ) = sup ( ( ( coe1𝑃 ) supp ( 0g𝐻 ) ) , ℝ* , < ) )
12 eqid ( Poly1𝑅 ) = ( Poly1𝑅 )
13 eqid ( PwSer1𝐻 ) = ( PwSer1𝐻 )
14 eqid ( Base ‘ ( PwSer1𝐻 ) ) = ( Base ‘ ( PwSer1𝐻 ) )
15 eqid ( Base ‘ ( Poly1𝑅 ) ) = ( Base ‘ ( Poly1𝑅 ) )
16 12 1 3 4 6 13 14 15 ressply1bas2 ( 𝜑𝐵 = ( ( Base ‘ ( PwSer1𝐻 ) ) ∩ ( Base ‘ ( Poly1𝑅 ) ) ) )
17 5 16 eleqtrd ( 𝜑𝑃 ∈ ( ( Base ‘ ( PwSer1𝐻 ) ) ∩ ( Base ‘ ( Poly1𝑅 ) ) ) )
18 17 elin2d ( 𝜑𝑃 ∈ ( Base ‘ ( Poly1𝑅 ) ) )
19 eqid ( coe1𝑃 ) = ( coe1𝑃 )
20 2 12 15 7 19 deg1val ( 𝑃 ∈ ( Base ‘ ( Poly1𝑅 ) ) → ( 𝐷𝑃 ) = sup ( ( ( coe1𝑃 ) supp ( 0g𝑅 ) ) , ℝ* , < ) )
21 18 20 syl ( 𝜑 → ( 𝐷𝑃 ) = sup ( ( ( coe1𝑃 ) supp ( 0g𝑅 ) ) , ℝ* , < ) )
22 eqid ( deg1𝐻 ) = ( deg1𝐻 )
23 eqid ( 0g𝐻 ) = ( 0g𝐻 )
24 22 3 4 23 19 deg1val ( 𝑃𝐵 → ( ( deg1𝐻 ) ‘ 𝑃 ) = sup ( ( ( coe1𝑃 ) supp ( 0g𝐻 ) ) , ℝ* , < ) )
25 5 24 syl ( 𝜑 → ( ( deg1𝐻 ) ‘ 𝑃 ) = sup ( ( ( coe1𝑃 ) supp ( 0g𝐻 ) ) , ℝ* , < ) )
26 11 21 25 3eqtr4d ( 𝜑 → ( 𝐷𝑃 ) = ( ( deg1𝐻 ) ‘ 𝑃 ) )