Step |
Hyp |
Ref |
Expression |
1 |
|
resseqnbas.r |
⊢ 𝑅 = ( 𝑊 ↾s 𝐴 ) |
2 |
|
resseqnbas.e |
⊢ 𝐶 = ( 𝐸 ‘ 𝑊 ) |
3 |
|
resseqnbas.f |
⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) |
4 |
|
resseqnbas.n |
⊢ ( 𝐸 ‘ ndx ) ≠ ( Base ‘ ndx ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
6 |
1 5
|
ressid2 |
⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → 𝑅 = 𝑊 ) |
7 |
6
|
fveq2d |
⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐸 ‘ 𝑅 ) = ( 𝐸 ‘ 𝑊 ) ) |
8 |
7
|
3expib |
⊢ ( ( Base ‘ 𝑊 ) ⊆ 𝐴 → ( ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐸 ‘ 𝑅 ) = ( 𝐸 ‘ 𝑊 ) ) ) |
9 |
1 5
|
ressval2 |
⊢ ( ( ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → 𝑅 = ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) 〉 ) ) |
10 |
9
|
fveq2d |
⊢ ( ( ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐸 ‘ 𝑅 ) = ( 𝐸 ‘ ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) 〉 ) ) ) |
11 |
3 4
|
setsnid |
⊢ ( 𝐸 ‘ 𝑊 ) = ( 𝐸 ‘ ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) 〉 ) ) |
12 |
10 11
|
eqtr4di |
⊢ ( ( ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐸 ‘ 𝑅 ) = ( 𝐸 ‘ 𝑊 ) ) |
13 |
12
|
3expib |
⊢ ( ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 → ( ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐸 ‘ 𝑅 ) = ( 𝐸 ‘ 𝑊 ) ) ) |
14 |
8 13
|
pm2.61i |
⊢ ( ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐸 ‘ 𝑅 ) = ( 𝐸 ‘ 𝑊 ) ) |
15 |
|
reldmress |
⊢ Rel dom ↾s |
16 |
15
|
ovprc1 |
⊢ ( ¬ 𝑊 ∈ V → ( 𝑊 ↾s 𝐴 ) = ∅ ) |
17 |
1 16
|
eqtrid |
⊢ ( ¬ 𝑊 ∈ V → 𝑅 = ∅ ) |
18 |
17
|
fveq2d |
⊢ ( ¬ 𝑊 ∈ V → ( 𝐸 ‘ 𝑅 ) = ( 𝐸 ‘ ∅ ) ) |
19 |
3
|
str0 |
⊢ ∅ = ( 𝐸 ‘ ∅ ) |
20 |
18 19
|
eqtr4di |
⊢ ( ¬ 𝑊 ∈ V → ( 𝐸 ‘ 𝑅 ) = ∅ ) |
21 |
|
fvprc |
⊢ ( ¬ 𝑊 ∈ V → ( 𝐸 ‘ 𝑊 ) = ∅ ) |
22 |
20 21
|
eqtr4d |
⊢ ( ¬ 𝑊 ∈ V → ( 𝐸 ‘ 𝑅 ) = ( 𝐸 ‘ 𝑊 ) ) |
23 |
22
|
adantr |
⊢ ( ( ¬ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐸 ‘ 𝑅 ) = ( 𝐸 ‘ 𝑊 ) ) |
24 |
14 23
|
pm2.61ian |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐸 ‘ 𝑅 ) = ( 𝐸 ‘ 𝑊 ) ) |
25 |
2 24
|
eqtr4id |
⊢ ( 𝐴 ∈ 𝑉 → 𝐶 = ( 𝐸 ‘ 𝑅 ) ) |