| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ressffth.d | 
							⊢ 𝐷  =  ( 𝐶  ↾s  𝑆 )  | 
						
						
							| 2 | 
							
								
							 | 
							ressffth.i | 
							⊢ 𝐼  =  ( idfunc ‘ 𝐷 )  | 
						
						
							| 3 | 
							
								
							 | 
							relfunc | 
							⊢ Rel  ( 𝐷  Func  𝐷 )  | 
						
						
							| 4 | 
							
								
							 | 
							resscat | 
							⊢ ( ( 𝐶  ∈  Cat  ∧  𝑆  ∈  𝑉 )  →  ( 𝐶  ↾s  𝑆 )  ∈  Cat )  | 
						
						
							| 5 | 
							
								1 4
							 | 
							eqeltrid | 
							⊢ ( ( 𝐶  ∈  Cat  ∧  𝑆  ∈  𝑉 )  →  𝐷  ∈  Cat )  | 
						
						
							| 6 | 
							
								2
							 | 
							idfucl | 
							⊢ ( 𝐷  ∈  Cat  →  𝐼  ∈  ( 𝐷  Func  𝐷 ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							syl | 
							⊢ ( ( 𝐶  ∈  Cat  ∧  𝑆  ∈  𝑉 )  →  𝐼  ∈  ( 𝐷  Func  𝐷 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							1st2nd | 
							⊢ ( ( Rel  ( 𝐷  Func  𝐷 )  ∧  𝐼  ∈  ( 𝐷  Func  𝐷 ) )  →  𝐼  =  〈 ( 1st  ‘ 𝐼 ) ,  ( 2nd  ‘ 𝐼 ) 〉 )  | 
						
						
							| 9 | 
							
								3 7 8
							 | 
							sylancr | 
							⊢ ( ( 𝐶  ∈  Cat  ∧  𝑆  ∈  𝑉 )  →  𝐼  =  〈 ( 1st  ‘ 𝐼 ) ,  ( 2nd  ‘ 𝐼 ) 〉 )  | 
						
						
							| 10 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( 𝐶  ∈  Cat  ∧  𝑆  ∈  𝑉 )  →  ( Homf  ‘ 𝐷 )  =  ( Homf  ‘ 𝐷 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( 𝐶  ∈  Cat  ∧  𝑆  ∈  𝑉 )  →  ( compf ‘ 𝐷 )  =  ( compf ‘ 𝐷 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 )  | 
						
						
							| 13 | 
							
								12
							 | 
							ressinbas | 
							⊢ ( 𝑆  ∈  𝑉  →  ( 𝐶  ↾s  𝑆 )  =  ( 𝐶  ↾s  ( 𝑆  ∩  ( Base ‘ 𝐶 ) ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantl | 
							⊢ ( ( 𝐶  ∈  Cat  ∧  𝑆  ∈  𝑉 )  →  ( 𝐶  ↾s  𝑆 )  =  ( 𝐶  ↾s  ( 𝑆  ∩  ( Base ‘ 𝐶 ) ) ) )  | 
						
						
							| 15 | 
							
								1 14
							 | 
							eqtrid | 
							⊢ ( ( 𝐶  ∈  Cat  ∧  𝑆  ∈  𝑉 )  →  𝐷  =  ( 𝐶  ↾s  ( 𝑆  ∩  ( Base ‘ 𝐶 ) ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							fveq2d | 
							⊢ ( ( 𝐶  ∈  Cat  ∧  𝑆  ∈  𝑉 )  →  ( Homf  ‘ 𝐷 )  =  ( Homf  ‘ ( 𝐶  ↾s  ( 𝑆  ∩  ( Base ‘ 𝐶 ) ) ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							eqid | 
							⊢ ( Homf  ‘ 𝐶 )  =  ( Homf  ‘ 𝐶 )  | 
						
						
							| 18 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝐶  ∈  Cat  ∧  𝑆  ∈  𝑉 )  →  𝐶  ∈  Cat )  | 
						
						
							| 19 | 
							
								
							 | 
							inss2 | 
							⊢ ( 𝑆  ∩  ( Base ‘ 𝐶 ) )  ⊆  ( Base ‘ 𝐶 )  | 
						
						
							| 20 | 
							
								19
							 | 
							a1i | 
							⊢ ( ( 𝐶  ∈  Cat  ∧  𝑆  ∈  𝑉 )  →  ( 𝑆  ∩  ( Base ‘ 𝐶 ) )  ⊆  ( Base ‘ 𝐶 ) )  | 
						
						
							| 21 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝐶  ↾s  ( 𝑆  ∩  ( Base ‘ 𝐶 ) ) )  =  ( 𝐶  ↾s  ( 𝑆  ∩  ( Base ‘ 𝐶 ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝐶  ↾cat  ( ( Homf  ‘ 𝐶 )  ↾  ( ( 𝑆  ∩  ( Base ‘ 𝐶 ) )  ×  ( 𝑆  ∩  ( Base ‘ 𝐶 ) ) ) ) )  =  ( 𝐶  ↾cat  ( ( Homf  ‘ 𝐶 )  ↾  ( ( 𝑆  ∩  ( Base ‘ 𝐶 ) )  ×  ( 𝑆  ∩  ( Base ‘ 𝐶 ) ) ) ) )  | 
						
						
							| 23 | 
							
								12 17 18 20 21 22
							 | 
							fullresc | 
							⊢ ( ( 𝐶  ∈  Cat  ∧  𝑆  ∈  𝑉 )  →  ( ( Homf  ‘ ( 𝐶  ↾s  ( 𝑆  ∩  ( Base ‘ 𝐶 ) ) ) )  =  ( Homf  ‘ ( 𝐶  ↾cat  ( ( Homf  ‘ 𝐶 )  ↾  ( ( 𝑆  ∩  ( Base ‘ 𝐶 ) )  ×  ( 𝑆  ∩  ( Base ‘ 𝐶 ) ) ) ) ) )  ∧  ( compf ‘ ( 𝐶  ↾s  ( 𝑆  ∩  ( Base ‘ 𝐶 ) ) ) )  =  ( compf ‘ ( 𝐶  ↾cat  ( ( Homf  ‘ 𝐶 )  ↾  ( ( 𝑆  ∩  ( Base ‘ 𝐶 ) )  ×  ( 𝑆  ∩  ( Base ‘ 𝐶 ) ) ) ) ) ) ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							simpld | 
							⊢ ( ( 𝐶  ∈  Cat  ∧  𝑆  ∈  𝑉 )  →  ( Homf  ‘ ( 𝐶  ↾s  ( 𝑆  ∩  ( Base ‘ 𝐶 ) ) ) )  =  ( Homf  ‘ ( 𝐶  ↾cat  ( ( Homf  ‘ 𝐶 )  ↾  ( ( 𝑆  ∩  ( Base ‘ 𝐶 ) )  ×  ( 𝑆  ∩  ( Base ‘ 𝐶 ) ) ) ) ) ) )  | 
						
						
							| 25 | 
							
								16 24
							 | 
							eqtrd | 
							⊢ ( ( 𝐶  ∈  Cat  ∧  𝑆  ∈  𝑉 )  →  ( Homf  ‘ 𝐷 )  =  ( Homf  ‘ ( 𝐶  ↾cat  ( ( Homf  ‘ 𝐶 )  ↾  ( ( 𝑆  ∩  ( Base ‘ 𝐶 ) )  ×  ( 𝑆  ∩  ( Base ‘ 𝐶 ) ) ) ) ) ) )  | 
						
						
							| 26 | 
							
								15
							 | 
							fveq2d | 
							⊢ ( ( 𝐶  ∈  Cat  ∧  𝑆  ∈  𝑉 )  →  ( compf ‘ 𝐷 )  =  ( compf ‘ ( 𝐶  ↾s  ( 𝑆  ∩  ( Base ‘ 𝐶 ) ) ) ) )  | 
						
						
							| 27 | 
							
								23
							 | 
							simprd | 
							⊢ ( ( 𝐶  ∈  Cat  ∧  𝑆  ∈  𝑉 )  →  ( compf ‘ ( 𝐶  ↾s  ( 𝑆  ∩  ( Base ‘ 𝐶 ) ) ) )  =  ( compf ‘ ( 𝐶  ↾cat  ( ( Homf  ‘ 𝐶 )  ↾  ( ( 𝑆  ∩  ( Base ‘ 𝐶 ) )  ×  ( 𝑆  ∩  ( Base ‘ 𝐶 ) ) ) ) ) ) )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							eqtrd | 
							⊢ ( ( 𝐶  ∈  Cat  ∧  𝑆  ∈  𝑉 )  →  ( compf ‘ 𝐷 )  =  ( compf ‘ ( 𝐶  ↾cat  ( ( Homf  ‘ 𝐶 )  ↾  ( ( 𝑆  ∩  ( Base ‘ 𝐶 ) )  ×  ( 𝑆  ∩  ( Base ‘ 𝐶 ) ) ) ) ) ) )  | 
						
						
							| 29 | 
							
								1
							 | 
							ovexi | 
							⊢ 𝐷  ∈  V  | 
						
						
							| 30 | 
							
								29
							 | 
							a1i | 
							⊢ ( ( 𝐶  ∈  Cat  ∧  𝑆  ∈  𝑉 )  →  𝐷  ∈  V )  | 
						
						
							| 31 | 
							
								
							 | 
							ovexd | 
							⊢ ( ( 𝐶  ∈  Cat  ∧  𝑆  ∈  𝑉 )  →  ( 𝐶  ↾cat  ( ( Homf  ‘ 𝐶 )  ↾  ( ( 𝑆  ∩  ( Base ‘ 𝐶 ) )  ×  ( 𝑆  ∩  ( Base ‘ 𝐶 ) ) ) ) )  ∈  V )  | 
						
						
							| 32 | 
							
								10 11 25 28 30 30 30 31
							 | 
							funcpropd | 
							⊢ ( ( 𝐶  ∈  Cat  ∧  𝑆  ∈  𝑉 )  →  ( 𝐷  Func  𝐷 )  =  ( 𝐷  Func  ( 𝐶  ↾cat  ( ( Homf  ‘ 𝐶 )  ↾  ( ( 𝑆  ∩  ( Base ‘ 𝐶 ) )  ×  ( 𝑆  ∩  ( Base ‘ 𝐶 ) ) ) ) ) ) )  | 
						
						
							| 33 | 
							
								12 17 18 20
							 | 
							fullsubc | 
							⊢ ( ( 𝐶  ∈  Cat  ∧  𝑆  ∈  𝑉 )  →  ( ( Homf  ‘ 𝐶 )  ↾  ( ( 𝑆  ∩  ( Base ‘ 𝐶 ) )  ×  ( 𝑆  ∩  ( Base ‘ 𝐶 ) ) ) )  ∈  ( Subcat ‘ 𝐶 ) )  | 
						
						
							| 34 | 
							
								
							 | 
							funcres2 | 
							⊢ ( ( ( Homf  ‘ 𝐶 )  ↾  ( ( 𝑆  ∩  ( Base ‘ 𝐶 ) )  ×  ( 𝑆  ∩  ( Base ‘ 𝐶 ) ) ) )  ∈  ( Subcat ‘ 𝐶 )  →  ( 𝐷  Func  ( 𝐶  ↾cat  ( ( Homf  ‘ 𝐶 )  ↾  ( ( 𝑆  ∩  ( Base ‘ 𝐶 ) )  ×  ( 𝑆  ∩  ( Base ‘ 𝐶 ) ) ) ) ) )  ⊆  ( 𝐷  Func  𝐶 ) )  | 
						
						
							| 35 | 
							
								33 34
							 | 
							syl | 
							⊢ ( ( 𝐶  ∈  Cat  ∧  𝑆  ∈  𝑉 )  →  ( 𝐷  Func  ( 𝐶  ↾cat  ( ( Homf  ‘ 𝐶 )  ↾  ( ( 𝑆  ∩  ( Base ‘ 𝐶 ) )  ×  ( 𝑆  ∩  ( Base ‘ 𝐶 ) ) ) ) ) )  ⊆  ( 𝐷  Func  𝐶 ) )  | 
						
						
							| 36 | 
							
								32 35
							 | 
							eqsstrd | 
							⊢ ( ( 𝐶  ∈  Cat  ∧  𝑆  ∈  𝑉 )  →  ( 𝐷  Func  𝐷 )  ⊆  ( 𝐷  Func  𝐶 ) )  | 
						
						
							| 37 | 
							
								36 7
							 | 
							sseldd | 
							⊢ ( ( 𝐶  ∈  Cat  ∧  𝑆  ∈  𝑉 )  →  𝐼  ∈  ( 𝐷  Func  𝐶 ) )  | 
						
						
							| 38 | 
							
								9 37
							 | 
							eqeltrrd | 
							⊢ ( ( 𝐶  ∈  Cat  ∧  𝑆  ∈  𝑉 )  →  〈 ( 1st  ‘ 𝐼 ) ,  ( 2nd  ‘ 𝐼 ) 〉  ∈  ( 𝐷  Func  𝐶 ) )  | 
						
						
							| 39 | 
							
								
							 | 
							df-br | 
							⊢ ( ( 1st  ‘ 𝐼 ) ( 𝐷  Func  𝐶 ) ( 2nd  ‘ 𝐼 )  ↔  〈 ( 1st  ‘ 𝐼 ) ,  ( 2nd  ‘ 𝐼 ) 〉  ∈  ( 𝐷  Func  𝐶 ) )  | 
						
						
							| 40 | 
							
								38 39
							 | 
							sylibr | 
							⊢ ( ( 𝐶  ∈  Cat  ∧  𝑆  ∈  𝑉 )  →  ( 1st  ‘ 𝐼 ) ( 𝐷  Func  𝐶 ) ( 2nd  ‘ 𝐼 ) )  | 
						
						
							| 41 | 
							
								
							 | 
							f1oi | 
							⊢ (  I   ↾  ( 𝑥 ( Hom  ‘ 𝐷 ) 𝑦 ) ) : ( 𝑥 ( Hom  ‘ 𝐷 ) 𝑦 ) –1-1-onto→ ( 𝑥 ( Hom  ‘ 𝐷 ) 𝑦 )  | 
						
						
							| 42 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐷 )  =  ( Base ‘ 𝐷 )  | 
						
						
							| 43 | 
							
								5
							 | 
							adantr | 
							⊢ ( ( ( 𝐶  ∈  Cat  ∧  𝑆  ∈  𝑉 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐷 )  ∧  𝑦  ∈  ( Base ‘ 𝐷 ) ) )  →  𝐷  ∈  Cat )  | 
						
						
							| 44 | 
							
								
							 | 
							eqid | 
							⊢ ( Hom  ‘ 𝐷 )  =  ( Hom  ‘ 𝐷 )  | 
						
						
							| 45 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( 𝐶  ∈  Cat  ∧  𝑆  ∈  𝑉 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐷 )  ∧  𝑦  ∈  ( Base ‘ 𝐷 ) ) )  →  𝑥  ∈  ( Base ‘ 𝐷 ) )  | 
						
						
							| 46 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( 𝐶  ∈  Cat  ∧  𝑆  ∈  𝑉 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐷 )  ∧  𝑦  ∈  ( Base ‘ 𝐷 ) ) )  →  𝑦  ∈  ( Base ‘ 𝐷 ) )  | 
						
						
							| 47 | 
							
								2 42 43 44 45 46
							 | 
							idfu2nd | 
							⊢ ( ( ( 𝐶  ∈  Cat  ∧  𝑆  ∈  𝑉 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐷 )  ∧  𝑦  ∈  ( Base ‘ 𝐷 ) ) )  →  ( 𝑥 ( 2nd  ‘ 𝐼 ) 𝑦 )  =  (  I   ↾  ( 𝑥 ( Hom  ‘ 𝐷 ) 𝑦 ) ) )  | 
						
						
							| 48 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( ( 𝐶  ∈  Cat  ∧  𝑆  ∈  𝑉 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐷 )  ∧  𝑦  ∈  ( Base ‘ 𝐷 ) ) )  →  ( 𝑥 ( Hom  ‘ 𝐷 ) 𝑦 )  =  ( 𝑥 ( Hom  ‘ 𝐷 ) 𝑦 ) )  | 
						
						
							| 49 | 
							
								
							 | 
							eqid | 
							⊢ ( Hom  ‘ 𝐶 )  =  ( Hom  ‘ 𝐶 )  | 
						
						
							| 50 | 
							
								1 49
							 | 
							resshom | 
							⊢ ( 𝑆  ∈  𝑉  →  ( Hom  ‘ 𝐶 )  =  ( Hom  ‘ 𝐷 ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝐶  ∈  Cat  ∧  𝑆  ∈  𝑉 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐷 )  ∧  𝑦  ∈  ( Base ‘ 𝐷 ) ) )  →  ( Hom  ‘ 𝐶 )  =  ( Hom  ‘ 𝐷 ) )  | 
						
						
							| 52 | 
							
								2 42 43 45
							 | 
							idfu1 | 
							⊢ ( ( ( 𝐶  ∈  Cat  ∧  𝑆  ∈  𝑉 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐷 )  ∧  𝑦  ∈  ( Base ‘ 𝐷 ) ) )  →  ( ( 1st  ‘ 𝐼 ) ‘ 𝑥 )  =  𝑥 )  | 
						
						
							| 53 | 
							
								2 42 43 46
							 | 
							idfu1 | 
							⊢ ( ( ( 𝐶  ∈  Cat  ∧  𝑆  ∈  𝑉 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐷 )  ∧  𝑦  ∈  ( Base ‘ 𝐷 ) ) )  →  ( ( 1st  ‘ 𝐼 ) ‘ 𝑦 )  =  𝑦 )  | 
						
						
							| 54 | 
							
								51 52 53
							 | 
							oveq123d | 
							⊢ ( ( ( 𝐶  ∈  Cat  ∧  𝑆  ∈  𝑉 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐷 )  ∧  𝑦  ∈  ( Base ‘ 𝐷 ) ) )  →  ( ( ( 1st  ‘ 𝐼 ) ‘ 𝑥 ) ( Hom  ‘ 𝐶 ) ( ( 1st  ‘ 𝐼 ) ‘ 𝑦 ) )  =  ( 𝑥 ( Hom  ‘ 𝐷 ) 𝑦 ) )  | 
						
						
							| 55 | 
							
								47 48 54
							 | 
							f1oeq123d | 
							⊢ ( ( ( 𝐶  ∈  Cat  ∧  𝑆  ∈  𝑉 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐷 )  ∧  𝑦  ∈  ( Base ‘ 𝐷 ) ) )  →  ( ( 𝑥 ( 2nd  ‘ 𝐼 ) 𝑦 ) : ( 𝑥 ( Hom  ‘ 𝐷 ) 𝑦 ) –1-1-onto→ ( ( ( 1st  ‘ 𝐼 ) ‘ 𝑥 ) ( Hom  ‘ 𝐶 ) ( ( 1st  ‘ 𝐼 ) ‘ 𝑦 ) )  ↔  (  I   ↾  ( 𝑥 ( Hom  ‘ 𝐷 ) 𝑦 ) ) : ( 𝑥 ( Hom  ‘ 𝐷 ) 𝑦 ) –1-1-onto→ ( 𝑥 ( Hom  ‘ 𝐷 ) 𝑦 ) ) )  | 
						
						
							| 56 | 
							
								41 55
							 | 
							mpbiri | 
							⊢ ( ( ( 𝐶  ∈  Cat  ∧  𝑆  ∈  𝑉 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐷 )  ∧  𝑦  ∈  ( Base ‘ 𝐷 ) ) )  →  ( 𝑥 ( 2nd  ‘ 𝐼 ) 𝑦 ) : ( 𝑥 ( Hom  ‘ 𝐷 ) 𝑦 ) –1-1-onto→ ( ( ( 1st  ‘ 𝐼 ) ‘ 𝑥 ) ( Hom  ‘ 𝐶 ) ( ( 1st  ‘ 𝐼 ) ‘ 𝑦 ) ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							ralrimivva | 
							⊢ ( ( 𝐶  ∈  Cat  ∧  𝑆  ∈  𝑉 )  →  ∀ 𝑥  ∈  ( Base ‘ 𝐷 ) ∀ 𝑦  ∈  ( Base ‘ 𝐷 ) ( 𝑥 ( 2nd  ‘ 𝐼 ) 𝑦 ) : ( 𝑥 ( Hom  ‘ 𝐷 ) 𝑦 ) –1-1-onto→ ( ( ( 1st  ‘ 𝐼 ) ‘ 𝑥 ) ( Hom  ‘ 𝐶 ) ( ( 1st  ‘ 𝐼 ) ‘ 𝑦 ) ) )  | 
						
						
							| 58 | 
							
								42 44 49
							 | 
							isffth2 | 
							⊢ ( ( 1st  ‘ 𝐼 ) ( ( 𝐷  Full  𝐶 )  ∩  ( 𝐷  Faith  𝐶 ) ) ( 2nd  ‘ 𝐼 )  ↔  ( ( 1st  ‘ 𝐼 ) ( 𝐷  Func  𝐶 ) ( 2nd  ‘ 𝐼 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝐷 ) ∀ 𝑦  ∈  ( Base ‘ 𝐷 ) ( 𝑥 ( 2nd  ‘ 𝐼 ) 𝑦 ) : ( 𝑥 ( Hom  ‘ 𝐷 ) 𝑦 ) –1-1-onto→ ( ( ( 1st  ‘ 𝐼 ) ‘ 𝑥 ) ( Hom  ‘ 𝐶 ) ( ( 1st  ‘ 𝐼 ) ‘ 𝑦 ) ) ) )  | 
						
						
							| 59 | 
							
								40 57 58
							 | 
							sylanbrc | 
							⊢ ( ( 𝐶  ∈  Cat  ∧  𝑆  ∈  𝑉 )  →  ( 1st  ‘ 𝐼 ) ( ( 𝐷  Full  𝐶 )  ∩  ( 𝐷  Faith  𝐶 ) ) ( 2nd  ‘ 𝐼 ) )  | 
						
						
							| 60 | 
							
								
							 | 
							df-br | 
							⊢ ( ( 1st  ‘ 𝐼 ) ( ( 𝐷  Full  𝐶 )  ∩  ( 𝐷  Faith  𝐶 ) ) ( 2nd  ‘ 𝐼 )  ↔  〈 ( 1st  ‘ 𝐼 ) ,  ( 2nd  ‘ 𝐼 ) 〉  ∈  ( ( 𝐷  Full  𝐶 )  ∩  ( 𝐷  Faith  𝐶 ) ) )  | 
						
						
							| 61 | 
							
								59 60
							 | 
							sylib | 
							⊢ ( ( 𝐶  ∈  Cat  ∧  𝑆  ∈  𝑉 )  →  〈 ( 1st  ‘ 𝐼 ) ,  ( 2nd  ‘ 𝐼 ) 〉  ∈  ( ( 𝐷  Full  𝐶 )  ∩  ( 𝐷  Faith  𝐶 ) ) )  | 
						
						
							| 62 | 
							
								9 61
							 | 
							eqeltrd | 
							⊢ ( ( 𝐶  ∈  Cat  ∧  𝑆  ∈  𝑉 )  →  𝐼  ∈  ( ( 𝐷  Full  𝐶 )  ∩  ( 𝐷  Faith  𝐶 ) ) )  |