Step |
Hyp |
Ref |
Expression |
1 |
|
resshom.1 |
⊢ 𝐷 = ( 𝐶 ↾s 𝐴 ) |
2 |
|
resshom.2 |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
3 |
|
homid |
⊢ Hom = Slot ( Hom ‘ ndx ) |
4 |
|
slotsbhcdif |
⊢ ( ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ∧ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) ∧ ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) ) |
5 |
|
simp1 |
⊢ ( ( ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ∧ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) ∧ ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) ) → ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ) |
6 |
5
|
necomd |
⊢ ( ( ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ∧ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) ∧ ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) ) → ( Hom ‘ ndx ) ≠ ( Base ‘ ndx ) ) |
7 |
4 6
|
ax-mp |
⊢ ( Hom ‘ ndx ) ≠ ( Base ‘ ndx ) |
8 |
1 2 3 7
|
resseqnbas |
⊢ ( 𝐴 ∈ 𝑉 → 𝐻 = ( Hom ‘ 𝐷 ) ) |