Metamath Proof Explorer


Theorem ressid

Description: Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014)

Ref Expression
Hypothesis ressid.1 𝐵 = ( Base ‘ 𝑊 )
Assertion ressid ( 𝑊𝑋 → ( 𝑊s 𝐵 ) = 𝑊 )

Proof

Step Hyp Ref Expression
1 ressid.1 𝐵 = ( Base ‘ 𝑊 )
2 ssid 𝐵𝐵
3 1 fvexi 𝐵 ∈ V
4 eqid ( 𝑊s 𝐵 ) = ( 𝑊s 𝐵 )
5 4 1 ressid2 ( ( 𝐵𝐵𝑊𝑋𝐵 ∈ V ) → ( 𝑊s 𝐵 ) = 𝑊 )
6 2 3 5 mp3an13 ( 𝑊𝑋 → ( 𝑊s 𝐵 ) = 𝑊 )