Description: Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ressid.1 | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
Assertion | ressid | ⊢ ( 𝑊 ∈ 𝑋 → ( 𝑊 ↾s 𝐵 ) = 𝑊 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressid.1 | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
2 | ssid | ⊢ 𝐵 ⊆ 𝐵 | |
3 | 1 | fvexi | ⊢ 𝐵 ∈ V |
4 | eqid | ⊢ ( 𝑊 ↾s 𝐵 ) = ( 𝑊 ↾s 𝐵 ) | |
5 | 4 1 | ressid2 | ⊢ ( ( 𝐵 ⊆ 𝐵 ∧ 𝑊 ∈ 𝑋 ∧ 𝐵 ∈ V ) → ( 𝑊 ↾s 𝐵 ) = 𝑊 ) |
6 | 2 3 5 | mp3an13 | ⊢ ( 𝑊 ∈ 𝑋 → ( 𝑊 ↾s 𝐵 ) = 𝑊 ) |