Description: Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ressid.1 | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| Assertion | ressid | ⊢ ( 𝑊 ∈ 𝑋 → ( 𝑊 ↾s 𝐵 ) = 𝑊 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressid.1 | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| 2 | ssid | ⊢ 𝐵 ⊆ 𝐵 | |
| 3 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 4 | eqid | ⊢ ( 𝑊 ↾s 𝐵 ) = ( 𝑊 ↾s 𝐵 ) | |
| 5 | 4 1 | ressid2 | ⊢ ( ( 𝐵 ⊆ 𝐵 ∧ 𝑊 ∈ 𝑋 ∧ 𝐵 ∈ V ) → ( 𝑊 ↾s 𝐵 ) = 𝑊 ) |
| 6 | 2 3 5 | mp3an13 | ⊢ ( 𝑊 ∈ 𝑋 → ( 𝑊 ↾s 𝐵 ) = 𝑊 ) |