Description: General behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ressbas.r | ⊢ 𝑅 = ( 𝑊 ↾s 𝐴 ) | |
ressbas.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | ||
Assertion | ressid2 | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌 ) → 𝑅 = 𝑊 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressbas.r | ⊢ 𝑅 = ( 𝑊 ↾s 𝐴 ) | |
2 | ressbas.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
3 | 1 2 | ressval | ⊢ ( ( 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌 ) → 𝑅 = if ( 𝐵 ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) ) ) |
4 | iftrue | ⊢ ( 𝐵 ⊆ 𝐴 → if ( 𝐵 ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) ) = 𝑊 ) | |
5 | 3 4 | sylan9eqr | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ ( 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌 ) ) → 𝑅 = 𝑊 ) |
6 | 5 | 3impb | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌 ) → 𝑅 = 𝑊 ) |